Investigation on Insulation Material Properties of 220 kV XLPECables after Pre-Qualification Test
Hou Shuai1, Fan Zhenyou2, Xu Man2, Zhan Yunpeng1, Fu Mingli1
1. CSG Electric Power Research Institute Guangzhou 510663 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi' an Jiaotong University Xi'an 710049 China
Abstract:In order to improve the technology of domestic electrical materials for high-voltage cables, some domestic enterprises had successively established cross-linked polyethylene (XLPE) production lines for 110 kV cables. And these cables had more than 10 years of operating experience. However, the long-term aging performance of 220 kV cross-linked polyethylene insulated cables based on domestic insulating materials was still insufficiently studied. In order to evaluate the long-term operational reliability of domestic 220 kV cross-linked polyethylene insulated cables, this work researches the long-term aging performance of the insulation material of domestic 220 kV XLPE cables after the pre-qualification test (PQ-test). The 220 kV cross-linked polyethylene insulating materials produced by two domestic enterprises were used by five cable enterprises to manufacture five batches of 220 kV cables. PQ-test were carried out on the cables in accordance with GB/T 18890.1—2015, in which the thermal cycle was effectively carried out 186 times at a voltage of 216 kV, with the maximum temperature of the conductor core at 90℃. There was no breakdown of the circuit in 9 000 hours. All cables passed positive and negative polarity 1 050 kV lightning impulse tests 10 times each. Taking the new cables of the same batch reserved before the PQ-test as reference, the insulating layer of the cables after the PQ-test was sampled in inner, middle and outer layers. The performance of the specimens before and after the PQ-test was systematically characterized. Firstly, the change mechanisms of thermal oxidation products and cross-linking by-products were analyzed by infrared spectroscopy, and the activation energy of thermal decomposition of the materials was characterized by thermogravimetric analysis. Afterwards, differential scanning calorimetry, gel content, mechanical properties and electrical properties were investigated. The results of infrared spectroscopy showed that small molecule cross-linking by-products diffused and escaped under the thermal effect of the PQ-test, the aromatic ketone carbonyl content of XLPE decreased, whose distribution tended to be the same in the radial direction due to sufficiently long diffusion times. The oxidative chain breakage of XLPE led to an increase in the oxidation product saturated fatty acid lipid/ketone carbonyl content. The residual cross-linking agent prompted XLPE to continue to undergo cross-linking reaction in the pre-identification test, and the degree of cross-linking increased slightly. The thermal history results of differential scanning calorimetry experiments showed that the temperature of the inner, middle and outer layers of the insulation decreased about 3~5℃ sequentially during the PQ-test. The thermal stress of the PQ-test promoted the crystal refinement and the increase of the material crystallinity. Limited by the increased cross-linking density, the size of the newly formed microcrystals was smaller, and the crystals were less spatially confined to each other, favoring an increase in the number of nuclei. After the PQ-test, the mechamical properties of the main insulation material of domestic 220 kV cross-linked polyethylene cables showed little change, and the AC breakdown strength meet the standard limits.
[1] 傅明利, 侯帅, 王磊, 等. 高压电缆半导电屏蔽料研究进展及关键技术分析[J]. 材料导报, 2023, 37(21): 68-74. Fu Mingli, Hou Shuai, Wang Lei, et al.Research progress and key technologies of semi-conductive shielding materials for high-voltage cables[J]. Materials Reports, 2023, 37(21): 68-74. [2] 侯帅, 傅明利, 黎小林, 等. 220 kV交联聚乙烯电缆绝缘料性能对比研究[J]. 中国电机工程学报, 2023, 43(6): 2483-2495. Hou Shuai, Fu Mingli, Li Xiaolin, et al.Comparative study on performances of 220kV XLPE cable insulation materials[J]. Proceedings of the CSEE, 2023, 43(6): 2483-2495. [3] 李国倡, 魏艳慧, 雷清泉, 等. 高压电缆半导电屏蔽料关键问题及研究进展[J]. 中国电机工程学报, 2022, 42(4): 1271-1285. Li Guochang, Wei Yanhui, Lei Qingquan, et al.Key problems and research progress of semi-conductive shielding materials for high voltage cables[J]. Proceedings of the CSEE, 2022, 42(4): 1271-1285. [4] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotech- nical Society, 2019, 34(1): 179-191. [5] 侯帅, 傅明利, 贾磊, 等. 220 kV XLPE绝缘材料长期老化性能及寿命评价[J]. 高电压技术, 2023, 49(12): 4900-4910. Hou Shuai, Fu Mingli, Jia Lei, et al.Long-term aging performances and life evaluation of 220 kV XLPE insulation materials[J]. High Voltage Engineering, 2023, 49(12): 4900-4910. [6] Xu Yang, Luo Pan, Xu Man, et al.Investigation on insulation material morphological structure of 110 and 220 kV XLPE retired cables for reusing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1687-1696. [7] 罗潘, 任志刚, 徐阳, 等. 退役高压交联聚乙烯电缆绝缘老化状态分析[J]. 电工技术学报, 2013, 28(10): 41-46. Luo Pan, Ren Zhigang, Xu Yang, et al.Aging condition analysis of high voltage XLPE cables out of service[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 41-46. [8] Wang Xiangbing, Liang Aiwu, Wang Yanfeng, et al.Influence on aggregation structure changes of retired cross-linked polyethylene (XLPE) cable insulation under pre-qualification test[J]. IOP Conference Series: Materials Science and Engineering, 2019, 585(1): 012049. [9] 刘刚, 吴亮, 金尚儿, 等. 基于电特性的110 kV交联聚乙烯电缆剩余寿命评估[J]. 高电压技术, 2017, 43(8): 2718-2723. Liu Gang, Wu Liang, Jin Shanger, et al.Assessment of 110 kV XLPE cables remaining life based on electrical characteristics[J]. High Voltage Engineering, 2017, 43(8): 2718-2723. [10] 沈耀军, 陈振新, 钱恺羽, 等. 预鉴定试验对直流电缆中空间电荷特性的影响[J]. 绝缘材料, 2018, 51(8): 64-68, 74. Shen Yaojun, Chen Zhenxin, Qian Kaiyu, et al.Effects of pre-qualification tests on space charge characteris- tics in DC cables[J]. Insulating Materials, 2018, 51(8): 64-68, 74. [11] 张伟, 胡修翠, 高超, 等. 长期服役XLPE电缆绝缘的空间电荷与热性能[J]. 高电压技术, 2022, 48(9): 3533-3541. Zhang Wei, Hu Xiucui, Gao Chao, et al.Space charge and thermal characteristics of long-service crosslinked polyethylene cable insulation[J]. High Voltage Engine- ering, 2022, 48(9): 3533-3541. [12] 国家质量监督检验检疫总局, 国家标准化管理委员会. 额定电压220 kV(Um=252 kV)交联聚乙烯绝缘电力电缆及其附件: GB/T 18890.1—2015[S]. 北京: 中国标准出版社, 2016. [13] 化学工业部合成材料老化研究所. 高分子材料老化与防老化[M]. 北京: 化学工业出版社, 1979. [14] 陈向荣, 孟繁博, 夏峰, 等. 脱气处理对高压直流用500 kV XLPE绝缘特性及其聚集形态的影响[J]. 中国电机工程学报, 2021, 41(10): 3645-3656, 3688. Chen Xiangrong, Meng Fanbo, Xia Feng, et al.Effect of degassing treatment on 500 kV XLPE insulation characteristics and aggregation structure[J]. Proceedings of the CSEE, 2021, 41(10): 3645-3656, 3688. [15] 罗兵, 孟繁博, 王婷婷, 等. 脱气处理对高压直流电缆绝缘特性的影响[J]. 电工技术学报, 2021, 36(增刊2): 730-735. Luo Bing, Meng Fanbo, Wang Tingting, et al.Effect of degassing treatments on insulation characteristics of high voltage DC cables[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 730-735. [16] 张添胤, 陈向荣, 王恩哲, 等. 硫化压力对500 kV超高压直流XLPE电缆工厂接头恢复绝缘性能的影响[J]. 电工技术学报, 2025, 40(9): 2931-2943. Zhang Tianyin, Chen Xiangrong, Wang Enzhe, et al.Effect of vulcanization pressure on the return insulation performance of 500 kV EHVDC XLPE cable factory joints[J]. Transactions of China Electro- technical Society, 2025, 40(9): 2931-2943. [17] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016. [18] 国家市场监督管理总局, 国家标准化管理委员会. 塑料聚合物热重法(TG) 第2部分:活化能的测定: GB/T 33047.2—2021[S]. 北京: 中国标准出版社, 2022. [19] 任鹏, 李庆民, 刘红磊, 等. 求解聚合物绝缘热解反应活化能的改进算法[J]. 中国电机工程学报, 2020, 40(19): 6371-6380. Ren Peng, Li Qingmin, Liu Honglei, et al.An improved algorithm to calculate the activation energy of pyrolysis reaction of polymer insulation[J]. Proceedings of the CSEE, 2020, 40(19): 6371-6380. [20] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79, 107. Liu Gang, Liu Siliang, Jin Shanger, et al.Comprehensive evaluation of remaining life of 110 kV XLPE insulated cable based on physical, chemical and electrical properties[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 72-79, 107. [21] 李欢, 李建英, 马永翔, 等. 不同温度热老化对XLPE电缆绝缘材料晶体结构的影响研究[J]. 中国电机工程学报, 2017, 37(22): 6740-6748, 6787. Li Huan, Li Jianying, Ma Yongxiang, et al.Effects of thermal aging on the crystal structures of the XLPE cable insulating material at different temperatures[J]. Proceedings of the CSEE, 2017, 37(22): 6740-6748, 6787. [22] 国家质量监督检验检疫总局, 国家标准化管理委员会. 额定电压220 kV(Um=252 kV)交联聚乙烯绝缘电力电缆及其附件: GB/T 18890.2—2015[S]. 北京: 中国标准出版社, 2016. [23] Liu Fei, Jiang Pingkai, Lei Qingquan, et al.A new parameter for degradation assessment of field aged XLPE power cables[J]. High Voltage Engineering, 2015, 41(4): 1228-1236. [24] 段玉兵, 韩明明, 王兆琛, 等. 不同热老化温度下高压电缆绝缘特性及失效机理[J]. 电工技术学报, 2024, 39(1): 45-54. Duan Yubing, Han Mingming, Wang Zhaochen, et al.Insulation characteristics and failure mechanism of high-voltage cables under different thermal aging temperatures[J]. Transactions of China Electrotech- nical Society, 2024, 39(1): 45-54. [25] Qin Sichen, Liu Rui, Wang Qian, et al.Study on the molecular structure evolution of long-term-operation XLPE cable insulation materials[J]. Energy Reports, 2022, 8: 1249-1256. [26] Lv Hongkun, Lu Tianhao, Xiong Lingqi, et al.Assessment of thermally aged XLPE insulation material under extreme operating temperatures[J]. Polymer Testing, 2020, 88: 106569.