Abstract:The novel cascaded wind power converter with isolated quad-active-bridge (QAB) converters has the advantages of high voltages and modular structures. Furthermore, it can directly eliminate low-frequency voltage pulsations and significantly reduce DC-bus capacitances under instantaneous pulsating power aggregation and transmission. Therefore, the proposed cascaded wind power converter has a broad application prospect in 10 MW to 20 MW offshore wind power systems. However, the input-winding currents of the QAB converter are biased with instantaneous pulsating power transmission, resulting in worsened current stress and losses within the QAB converter. This research focuses on the causes of the input-winding current bias and the approach to thoroughly eliminating the input-winding current bias. The main work is given as follows. (1) Based on the decoupled equivalent circuit model of the QAB converter and the employed single-phase-shifted (SPS) modulation, the factors contributing to winding current bias and the pulsating trends of the winding current amplitude are analyzed. When the QAB converter adopts the SPS modulation strategy to transmit instantaneous pulsating power, the primary leakage inductance volt-second is imbalanced due to the unequal duty cycle of the input winding voltage's positive and negative polarities. The input winding current shows a downward bias. Although the equivalent resistance of the QAB converter can mitigate part of the winding bias by consuming the remnant of the primary leakage inductance, the effect of this approach is limited, and the downward bias of the input winding current is still significant. (2) An improved phase-shifted modulation strategy is proposed. The proposed optimized modulation strategy maintains the external phase-shifted angle necessary for transmitting instantaneous pulsating power while introducing an internal phase-shifted angle to balance the input winding voltage. By ensuring equal duty ratios for the positive and negative polarities of the input winding voltage, a balanced volt-second product in the primary leakage inductances can be achieved, thereby thoroughly eliminating the input-winding current bias. (3) Utilizing Matlab/Simulink, a 10 kV/20 MW wind turbine simulation model is constructed. The proposed improved phase-shifted modulation can eliminate the input-winding current bias. In contrast, the conventional SPS modulation yields a bias of approximately 600 A. The results validate the accuracy of the theoretical analysis and the feasibility of the proposed optimized phase-shifted modulation strategy. Additionally, a 2 kW low-power experimental platform is constructed. When the QAB converter operates in the rated state, the losses and current stress (peak) of the QAB converter are 94.3 W and 6 A with the conventional SPS modulation, while only 83.1 W and 5 A with the proposed optimized phase-shifted modulation. The losses and current stress (peak) can be decreased by about 11.9% and 16.7%, respectively, which optimizes the operation characteristics of the cascaded wind power converter.
[1] 蔡旭, 陈根, 周党生, 等. 海上风电变流器研究现状与展望[J]. 全球能源互联网, 2019, 2(2): 102-115. Cai Xu, Chen Gen, Zhou Dangsheng, et al.Review and prospect on key technologies for offshore wind power converters[J]. Journal of Global Energy Inter- connection, 2019, 2(2): 102-115. [2] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(增刊1): 30-42. Gao Chen, Zhao Yong, Wang Deliang, et al.Research status and prospect of condition based maintenance technology for offshore wind turbine electrical equipment[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 30-42. [3] 刘逸凡, 邹明, 王焱, 等. 面向海上风电仿真的永磁同步发电机电磁暂态等效建模方法[J]. 电工技术学报, 2024, 39(8): 2400-2411. Liu Yifan, Zou Ming, Wang Yan, et al.Equivalent modeling method for electromagnetic transient of permanent magnet synchronous generator for offshore wind power simulation[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2400-2411. [4] 蔡希鹏, 邹常跃, 彭发喜, 等. 超大规模海上风电海陆一体直流输电技术探讨[J]. 电网技术, 2024, 48(7): 2895-2901. Cai Xipeng, Zou Changyue, Peng Faxi, et al.Discussion on HVDC transmission technology for super-large scale offshore wind power under offshore- onshore integration[J]. Power System Technology, 2024, 48(7): 2895-2901. [5] 王玉彬, 朱新凯, 程明. 海上风力发电用静态密封双定子高温超导发电机的样机研制与测试[J]. 中国电机工程学报, 2021, 41(23): 8148-8159. Wang Yubin, Zhu Xinkai, Cheng Ming.Development and test of prototype of dual-stator HTS offshore wind generator with stationary seal[J]. Proceedings of the CSEE, 2021, 41(23): 8148-8159. [6] 高本锋, 刘培鑫, 孙大卫, 等. 构网/跟网型混合风电场次同步振荡特性与机理分析[J]. 电工技术学报, 2025, 40(6): 1945-1959. Gao Benfeng, Liu Peixin, Sun Dawei, et al.Analysis of subsynchronous oscillation characteristics and mechanism of grid-forming/grid-following hybrid wind farms[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1945-1959. [7] 韩丽, 王冲, 于晓娇, 等. 考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J]. 电工技术学报, 2024, 39(7): 2033-2045. Han Li, Wang Chong, Yu Xiaojiao, et al.Low-carbon and economic dispatch considering the carbon capture power plants with flexible adjustment of wind power ramp[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2033-2045. [8] 潘俊良, 王明渝. 适用于大型海上风电的谐振型飞跨电容式模块化升压变换器[J]. 电工技术学报, 2024, 39(12): 3746-3760. Pan Junliang, Wang Mingyu.Resonant flying capacitor modular boost converter for large scale offshore wind power[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3746-3760. [9] Kim T, Park H, Suh Y.Application of 10kV IGCT in 5-level ANPC inverters employed for 20MW wind turbine systems[C]//2023 11th International Con- ference on Power Electronics and ECCE Asia, Jeju Island, Korea, 2023: 93-98. [10] Yuan Xibo, Zhang Yonglei, Peng Xin.Power converter technologies for 20MW wind turbines[C]// 2022 IEEE Energy Conversion Congress and Expo- sition, Detroit, USA, 2022: 1-8. [11] 绳伟辉, 李崇坚, 朱春毅, 等. 大功率IGCT三电平变流器空间矢量PWM调制算法[J]. 电工技术学报, 2007, 22(8): 1-6. Sheng Weihui, Li Chongjian, Zhu Chunyi, et al.Investigation on space vector PWM method for large power three-level converter equipped with IGCTs[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 1-6. [12] 唐新灵, 张朋, 陈中圆, 等. 高压大功率压接型 IGBT 器件封装技术研究综述[J]. 中国电机工程学报, 2019, 39(12): 3622-3637. Tang Xinling, Zhang Peng, Chen Zhongyuan, et al.Review of high voltage high power press pack IGBT package technology[J]. Proceedings of the CSEE, 2019, 39(12): 3622-3637. [13] Zhang Yonglei, Yuan Xibo, Al-akayshee M. A reliable medium-voltage high-power conversion system for MWs wind turbines[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 859-867. [14] Catalan P, Wang Yanbo, Arza J, et al.A com- prehensive overview of power converter applied in high-power wind turbine: key challenges and potential solutions[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6169-6195. [15] 张永磊, 朱朋, 原熙博, 等. 瞬时功率聚合传输的低电容值大功率级联型风力发电系统[J]. 电网技术, 2022, 46(7): 2759-2767. Zhang Yonglei, Zhu Peng, Yuan Xibo, et al.Low- capacitance high-power cascaded wind turbine system with instantaneous power convergence and tran- sition[J]. Power System Technology, 2022, 46(7): 2759-2767. [16] Wang Huai, Blaabjerg F.Reliability of capacitors for DC-link applications in power electronic con- verters-an overview[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3569-3578. [17] Li Xiao, Cheng Linqian, He Liqun, et al.Capacitor voltage ripple minimization of a modular three-phase AC/DC power electronics transformer with four- winding power channel[J]. IEEE Access, 2020, 8: 119594-119608. [18] Buticchi G, Costa L F, Barater D, et al.A quadruple active bridge converter for the storage integration on the more electric aircraft[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8174-8186. [19] 杨亚宇, 邰能灵, 黄文焘, 等. 船舶中压直流综合电力系统(一): 系统结构和电力电子变换器[J]. 电工技术学报, 2024, 39(21): 6647-6665. Yang Yayu, Tai Nengling, Huang Wentao, et, al. Shipboard medium-voltage DC integrated power system Ⅰ: system architecture and power electronic converter[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6647-6665. [20] 骆仁松, 汪涛, 文继峰, 等. 大功率高频变压器三维温升计算及优化设计方法[J].电工技术学报, 2023, 38(18): 4994-5005, 5016. Luo Rensong, Wang Tao, Wen Jifeng, et al.Three- dimensional temperature calculation and optimization design method for high power high-frequency trans- former[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4994-5005, 5016. [21] 高晨祥, 林丹颖, 韩林洁, 等. 双有源桥型电力电子变压器电磁暂态实时低耗等效模型[J]. 电力系统自动化, 2024, 48(8): 195-206. Gao Chenxiang, Lin Danying, Han Linjie, et al.Electromagnetic transient real-time low-consumption equivalent model of dual active bridge based power electronic transformer[J]. Automation of Electric Power Systems, 2024, 48(8): 195-206. [22] 邓丹阳, 陈艳慧. 双有源桥直流变换器三电平扩展移相控制下电感电流有效值最优跟踪控制策略[J]. 电工技术学报, 2024, 39(18): 5800-5815. Deng Danyang, Chen Yanhui.Optimal tracking control strategy of inductive current RMS for dual- active bridge DC converter with three-level extended phase-shift control[J]. Transactions of China Elec- trotechnical Society, 2024, 39(18): 5800-5815. [23] Zhao Biao, Song Qiang, Liu Wenhua, et al.Transient DC bias and current impact effects of high- frequency-isolated bidirectional DC-DC converter in practice[J]. IEEE Transactions on Power Electronics, 2016, 31(4), 3203-3216. [24] Li Xiaodong, Li Yifan.An optimized phase-shift modulation for fast transient response in a dual- active-bridge converter[J]. IEEE Transactions on Power Electronics, 2014, 29(6): 2661-2665. [25] 吴春华, 陈修淋, 李智华, 等. 全移相双有源全桥直流变换器的瞬态电流偏置抑制策略[J]. 电工技术学报, 2024, 39(4): 1116-1131. Wu Chunhua, Chen Xiulin, Li Zhihua, et al.Transient current bias suppression strategy of full phase shifting dual active full bridge DC converter[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1116-1131. [26] Dai Tianli, Qin Jinggang, Ge Gao, et al.Research on transient DC bias analysis and suppression in EPS DAB DC-DC converter[J]. IEEE Access, 2020, 8: 61421-61432. [27] Bu Qinglei, Wen Huiqing, Wen Jiacheng, et al.Transient DC bias elimination of dual-active-bridge DC-DC converter with improved triple-phase-shift control[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(10): 8587-8598. [28] Hou Nie, Hu Jingxin, Mou Di, et al.A simple DC- offset eliminating method of the series-inductance current for the DAB DC-DC converter[J]. IEEE Transactions on Power Electronics, 2023, 38(4): 4224-4228. [29] 刘子薇, 孙兆龙, 刘宝龙, 等. 基于直接功率控制的双有源桥暂态直流偏置抑制策略[J]. 电工技术学报, 2023, 38(12): 3234-3247. Liu Ziwei, Sun Zhaolong, Liu Baolong, et al.Transient DC bias suppression strategy of dual active bridge based on direct power control[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3234-3247. [30] 朱朋. 基于隔离型四有源桥DC/DC的级联型变换器拓扑与控制研究[D]. 徐州: 中国矿业大学, 2022. Zhu Peng.Research on topology and control of cascaded converter based on isolated quad-active- bridge DC/DC converter[D]. Xuzhou: China University of Mining and Technology, 2022.