Abstract:The FHSM method is applied in the bidirectional resonant converter to achieve wide voltage gain with fixed switching frequency and smooth bidirectional power transmission. The existing resonant parameter design methods for the bidirectional resonant converter with FHSM may result in high turn-off current and reactive power at the high-current side in the low-voltage application. This paper proposes a characteristic- impedance-based resonant tank design method for the FHSM-controlled BSRC to achieve wide-range ZCS and low reactive power at the high-current side. Firstly, the characteristic-impedance-based resonant tank model of the FHSM-controlled BSRC is analyzed. The characteristic impedance of the resonant tank affects the amplitude and zero-crossing point of the resonant current, thereby affecting the RMS current and ZCS performance of the converter. Then, by analyzing the port voltages of the resonant tank and current with the Fourier transform, it is found that increasing the characteristic impedance leads to a decrease in the amplitude of higher-order harmonics of resonant current, thus reducing the reactive power of the FHSM-controlled BSRC. In addition, when the characteristic impedance increases to a threshold value, the impact of higher-order harmonics on the resonant current becomes small, and the resonant current has the same zero-crossing points as the low-voltage side midpoint voltage. Thus, ZCS can be realized for low-voltage side switches. The characteristic impedance range of FHSM-controlled BSRC at the low-voltage side is obtained by substituting the critical condition into the expression of resonant current. Considering the resonant capacitor’s voltage stress and the resonant inductor’s volume, the resonant parameters are recommended to achieve ZCS under high output current conditions. Under low output current conditions, the low-voltage side switches turn off with a small current, facilitating ZVS. The FHSM-controlled BSRC has a lower RMS current using the proposed design method than the two existing resonant parameter design methods. A 6 kW prototype is built to validate the effectiveness of the proposed method. The steady-state and ZCS waveforms of the FHSM-controlled BSRC are presented under different operating conditions. The proposed design method achieves a wide range of ZCS and low reactive power at the low-voltage side of the converter. Additionally, the theoretical efficiency and loss distribution of the FHSM-controlled BSRC with different parameter design methods are compared under the conditions of VH=360~440 V, VL=20~60 V, IL=100 A, fs=100 kHz, and n=6. The results reveal that the proposed design method is superior in efficiency improvement with low voltage and high current output.
黄君仪, 韩华, 许国, 路正美, 粟梅. 一种用于FHSM控制的BSRC实现低压侧ZCS和低电流有效值的谐振腔设计方法[J]. 电工技术学报, 2025, 40(4): 1193-1202.
Huang Junyi, Han Hua, Xu Guo, Lu Zhengmei, Su Mei. A Resonant Tank Design Method for BSRC with FHSM Achieving ZCS and Low RMS Current at Low-Voltage Side. Transactions of China Electrotechnical Society, 2025, 40(4): 1193-1202.
[1] 江凌峰, 龚邻骁, 金新宇, 等. 基于遗传算法的多模块IPOP双有源全桥DC-DC变换器总电流有效值优化策略[J]. 电工技术学报, 2023, 38(24): 6782-6797. Jiang Lingfeng, Gong Linxiao, Jin Xinyu, et al.Total root mean square current optimization of IPOP dual active bridge DC-DC converter based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6782-6797. [2] 吴春华, 陈修淋, 李智华, 等. 全移相双有源全桥直流变换器的瞬态电流偏置抑制策略[J]. 电工技术学报, 2024, 39(4): 1116-1131. Wu Chunhua, Chen Xiulin, Li Zhihua, et al.Suppression strategy of transient current bias in fullphase-shifted dual-active full-bridge DC converter[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1116-1131. [3] 李骏驰, 吴俊勇, 熊飞, 等. 多端口电力电子变压器的安全稳定运行区域分析与控制[J]. 电力系统自动化, 2022, 46(20): 129-138. Li Junchi, Wu Junyong, Xiong Fei, et al.Analysis and control of safe and stable operation region for multiport power electronic transformer[J]. Automation of Electric Power Systems, 2022, 46(20): 129-138. [4] Yu S, Nguyen M Q, Choi W.A novel soft-switching battery charge/discharge converter with the zero voltage discharge function[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5067-5078. [5] 李福, 邓红雷, 张国驹, 等. 一种中间电容谐振型级联双向DC-DC变换器[J]. 电工技术学报, 2022, 37(20): 5253-5266. Li Fu, Deng Honglei, Zhang Guoju, et al.A cascaded bidirectional DC-DC converter with intermediate capacitor resonance[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5253-5266. [6] Chen Xiaoying, Xu Guo, Xie Shiming, et al.A natural bidirectional input-series-output-parallel LLC-DCX converter with automatic power sharing and power limitation capability for Li-ion battery formation and grading system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3618-3632. [7] 廖嘉睿, 杭丽君, 但志敏, 等. 宽范围CLLLC双向同步整流数字控制方法[J]. 电工技术学报, 2022, 37(14): 3632-3642. Liao Jiarui, Hang Lijun, Dan Zhimin, et al.Digital control method of wide-range CLLLC bidirectional synchronous rectification[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3632-3642. [8] 徐菁涛, 许国, 孙尧, 等. 耦合电感集成型谐振变换器及其自适应频率控制[J]. 电工技术学报, 2023, 38(4): 998-1009. Xu Jingtao, Xu Guo, Sun Yao, et al.Coupled inductor integrated resonant converter with adaptive frequency control[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 998-1009. [9] 李加明, 任小永, 周治成, 等. 基于谐振网络优化的双向LLC-DCX多模块并联系统均流优化研究[J]. 电工技术学报, 2023, 38(10): 2720-2730, 2756. Li Jiaming, Ren Xiaoyong, Zhou Zhicheng, et al.Research on current sharing optimization of bidirectional LLC-DCX multi-module parallel system based on resonant network optimization[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2720-2730, 2756. [10] 管乐诗, 温兆亮, 许晓志, 等. 适用于宽增益范围的可重构单级DC-DC变换器及其磁元件设计[J]. 电工技术学报, 2023, 38(6): 1571-1583. Guan Yueshi, Wen Zhaoliang, Xu Xiaozhi, et al.A modular reconfigurable single-stage DC-DC converter suitable for wide gain range and its magnetic design[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1571-1583. [11] 李浩然, 崔超辉, 王生东, 等. 基于二阶拟合模型的SiC双向LLC数字同步整流控制[J]. 电工技术学报, 2022, 37(24): 6191-6203. Li Haoran, Cui Chaohui, Wang Shengdong, et al.Two-order fitting model-based digital synchronous rectifier control for SiC bidirectional LLC converter[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6191-6203. [12] Chen Ning, Chen Min, Li Bodong, et al.Synchronous rectification based on resonant inductor voltage for CLLC bidirectional converter[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 547-561. [13] Wang Kangping, Li Hongchang, Yu Zheyuan, et al.An isolated capacitor-compensated current sensing method for high-frequency resonant converters[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6009-6013. [14] Moon S, Chen C, Wang R J.A new dead time regulation synchronous rectification control method for high efficiency LLC resonant converters[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10673-10683. [15] Li Bodong, Chen Min, Wang Xiaoqing, et al.An optimized digital synchronous rectification scheme based on time-domain model of resonant CLLC circuit[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10933-10948. [16] Fang Zhijian, Dong Hanlin, Sun Haotian, et al.Intermittent sinusoidal modulation of bidirectional series resonant converter with zero current switching, linear current controllability, and load-independent efficiency[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 11725-11738. [17] Huang Junyi, Han Hua, Xu Guo, et al.Coupledinductor-based bidirectional resonant converter with reduced component count and load-independent voltage gain[J]. IEEE Transactions on Industrial Electronics, 2024, 71(2): 1559-1571. [18] Wu Hongfei, Tang Xinxi, Zhao Jian, et al.An isolated bidirectional microinverter based on voltage-in-phase PWM-controlled resonant converter[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 562-570. [19] Tang Xinxi, Wu Hongfei, Hua Wenmin, et al.Threeport bidirectional series-resonant converter with first-harmonic-synchronized PWM[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1410-1419. [20] Wu Hongfei, Sun Kai, Li Yuewei, et al.Fixedfrequency PWM-controlled bidirectional current-fed soft-switching series-resonant converter for energy storage applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6190-6201.