Abstract:Capacitors are the core devices for decoupling, filtering, and bypassing in power electronics. Therefore, identifying and detecting its operating state is essential. This paper proposes a method to estimate the capacitance value using the principle of extended-spectrum time domain reflection. Firstly, considering that the ceramic capacitor has excellent high-frequency response and small parasitic parameters, multiple pseudo-random signals modulated by BPSK are injected into the selected 15 groups of pF-level ceramic capacitors. Set the injection signal code length N to 7, 31, 63, and the injection signal frequency to 5 groups of integer frequency bands with 6~10 MHz. Secondly, the collected signals are preprocessed by filtering, normalization, and denoising, and the principal components are extracted. According to the cross-correlation waveform image of the injected and reflected signals, the mapping relationship between the four characteristic parameters (signal type, signal frequency, peak values of the cross-correlation coefficient with or without time delay) and capacitance is significant. Finally, using the above four characteristic parameters as inputs, a capacity estimation model is established based on the BP neural network. The initialization parameters are optimized by the GA genetic algorithm. The results show that the ceramic capacitor has good high-frequency response characteristics. Its parasitic parameters can be ignored in the high-frequency band, and the capacitance value almost determines the impedance. With the increase in signal length, the sidelobe value of the signal cross-correlation coefficient image is decreased, and the correlation characteristics are good. The signal frequency affects the cross-correlation waveform of the signal by affecting the characteristic impedance in the capacitor. Due to the capacitance’s time delay effect, the corresponding peak value of the cross-correlation coefficient is strictly positively correlated with the capacitance value. At the same time, compared with the traditional BP neural network model, the model error optimized by the GA algorithm is reduced by 28.32%, and the estimation accuracy is above 99%, which is suitable for better mining the mapping relationship between characteristic parameters and capacity value. In summary, the proposed method can accurately estimate the capacitance value and identify the state of the capacitor online without disassembling the circuit or destroying the capacitor structure. As a result, the circuit’s reliability and stability are improved.
[1] 王立乔, 臧朔, 李翀, 等. 一种基于对称半桥功率解耦拓扑的单相电流型变换器[J]. 电工技术学报, 2024, 39(24): 7764-7776. Wang Liqiao, Zang Shuo, Li Chong, et al.A single-phase current-source converter based on the symmetrical half-bridge power decoupling topology[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7764-7776. [2] 罗泽霖, 孟景辉, 刘金朝, 等. 基于WPD-CNN的补偿电容故障诊断方法研究[J]. 铁道标准设计: 1-9. DOI: 10.13238/j.issn.1004-2954.202305100005. Luo Zelin, Meng Jinghui, Liu Jinzhao, et al.Research on compensation capacitor fault diagnosis method based on WPD-CNN[J]. Railway Standard Design, 2023, 1-9. DOI: 10.13238/j.issn.1004-2954.202305100005. [3] 雷顺广, 束洪春, 李志民. 基于桥臂功率特征的全-半混合型柔性直流输电线路保护[J]. 电工技术学报, 2023, 38(13): 3563-3575. Lei Shunguang, Shu Hongchun, Li Zhimin.Full-half bridge hybrid VSC-HVDC transmission line protection method based on power characteristics of bridge arms[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3563-3575. [4] 马敏, 梁雅蓉. 基于多尺度自适应特征聚合网络的ECT图像重建[J]. 仪器仪表学报, 2023, 44(6): 264-272. Ma Min, Liang Yarong.ECT image reconstruction based on multi-scale adaptive feature aggregation network[J]. Chinese Journal of Scientific Instrument, 2023, 44(6): 264-272. [5] 律德财, 邵富群, 郭志恒. 高压法微小电容检测[J]. 仪器仪表学报, 2009, 30(7): 1448-1451. Shao Fuqun, Guo Zhiheng.Inspection of low capacitance by high voltage method[J]. Chinese Journal of Scientific Instrument, 2009, 30(7): 1448-1451. [6] 张姗, 梁志瑞, 张丽芳, 等. 一种谐振接地系统电容电流测量新方法[J]. 电力科学与技术学报, 2020, 35(1): 109-114. Zhang Shan, Liang Zhirui, Zhang Lifang, et al.A new capacitor current measurement method for resonance grounding system[J]. Journal of Electric Power Science and Technology, 2020, 35(1): 109-114. [7] He Shoujie, Zhao Jianxun, Ha Jing, et al.Experiment and simulation of the characteristics and mechanisms of self-oscillations in parallel-plate glow discharges[J]. Journal of Applied Physics, 2020, 127(21): 213302. [8] 丁英丽. 交流型微小电容测量电路的设计[J]. 电工技术杂志, 2003, 22(9): 100-101, 84. Ding Yingli.Design of alternating current circuit about the small capacity[J]. Electrotechnical Journal, 2003, 22(9): 100-101, 84. [9] 李新娥, 马铁华, 祖静, 等. 基于充放电原理的小电容测量电路[J]. 探测与控制学报, 2012, 34(2): 42-48. Li Xine, Ma Tiehua, Zu Jing, et al.Tiny change capacitance measuring circuit based on the principl of charging and discharging[J]. Journal of Detection & Control, 2012, 34(2): 42-48. [10] 赵蕾, 张文栋, 何常德, 等. 微电容检测电路的设计和噪声分析[J]. 仪表技术与传感器, 2016(12): 157-160. Zhao Lei, Zhang Wendong, He Changde, et al.Design and noise analysis of weak capacitance detection circuit[J]. Instrument Technique and Sensor, 2016(12): 157-160. [11] 陶加杨, 徐龙祥. 磁悬浮轴承电容传感器[J]. 传感器与微系统, 2023, 42(1): 94-97. Tao Jiayang, Xu Longxiang.Maglev bearing capacitive sensor[J]. Transducer and Microsystem Technologies, 2023, 42(1): 94-97. [12] Shahi S, Tuninetti D, Devroye N.On the capacity of the AWGN channel with additive radar interference[J]. IEEE Transactions on Communications, 2018, 66(2): 629-643. [13] 李晶, 于殿泓. 非平行板电容传感器的微小电容检测电路设计[J]. 仪表技术与传感器, 2020(1): 100-103. Li Jing, Yu Dianhong.Design of small capacitance detection circuit for non-parallel plate capacitive sensor[J]. Instrument Technique and Sensor, 2020(1): 100-103. [14] 李恺颜, 曾正, 孙鹏, 等. 基于拓扑优化的车用功率模块Pin-Fin设计方法[J]. 电工技术学报, 2023, 38(18): 4963-4977, 4993. Li Kaiyan, Zeng Zheng, Sun Peng, et al.Topology optimization design of Pin-Fin for automotive power module[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4963-4977, 4993. [15] 王佳琳, 钱帅伟, 彭彦军, 等. 基于行波反射法的SF6断路器分合闸线圈匝间短路故障定位研究[J]. 机电工程技术, 2023, 52(6): 211-216. Wang Jialin, Qian Shuaiwei, Peng Yanjun, et al.Research on fault location of SF6 circuit breaker opening/closing coil based on traveling-wave reflection method[J]. Mechanical & Electrical Engineering Technology, 2023, 52(6): 211-216. [16] Martínez-Gimeno M A, Jiménez-Bello M A, Lidón A, et al. Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring[J]. Agricultural Water Management, 2020, 235: 106151. [17] 吴静红, 刘浩, 杨鹏, 等. 基于光频域反射计技术的混凝土裂缝识别与监测[J]. 激光与光电子学进展, 2019, 56(24): 241201. Wu Jinghong, Liu Hao, Yang Peng, et al.Identification and monitoring of concrete cracks based on optical frequency domain reflectometry technique[J]. Laser & Optoelectronics Progress, 2019, 56(24): 241201. [18] Shi Xudong, Li Ruipu, Zhang Haotian, et al.Application of augmented spread spectrum time domain reflectometry for detection and localization of soft faults on a coaxial cable[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4891-4901. [19] Zhaksylyk Y, Halvorsen E, Hanke U, et al.Analysis of fundamental differences between capacitive and inductive impedance matching for inductive wireless power transfer[J]. Electronics, 2020, 9(3): 476. [20] 唐圣学, 董沙沙, 姚芳. 一种Buck变换器输出电容故障在线预测方法[J]. 太阳能学报, 2020, 41(1): 333-341. Tang Shengxue, Dong Shasha, Yao Fang.An online method for failure prediction of output capacitor in Buck converter[J]. Acta Energiae Solaris Sinica, 2020, 41(1): 333-341. [21] 舒畅, 王晨雪, 高勇. MAPSK和QAM通信信号的调制识别[J]. 通信技术, 2012, 45(12): 37-40, 47. Shu Chang, Wang Chenxue, Gao Yong.Modulation classification of MAPSK and QAM[J]. Communications Technology, 2012, 45(12): 37-40, 47. [22] 尹振东, 王莉, 陈洪圳, 等. 增广时频域反射法在电缆复合故障检测中的应用[J]. 中国电机工程学报, 2020, 40(23): 7760-7772. Yin Zhendong, Wang Li, Chen Hongzhen, et al.Application of augmented time frequency domain reflectometry in detection of complex cable faults[J]. Proceedings of the CSEE, 2020, 40(23): 7760-7772. [23] 叶源, 胡晓. 计及双界面的电缆绝缘水树缺陷时域反射解析模型[J]. 电工技术学报, 2024, 39(1): 55-64. Ye Yuan, Hu Xiao.A dual interface analytical model for time-domain reflectometry of water tree defects in power cables[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 55-64. [24] 王帅帅, 贾学东, 陈国军, 等. 一种基于扩频声波的室内定位方法及实现[J]. 测绘科学技术学报, 2020, 37(2): 216-220. Wang Shuaishuai, Jia Xuedong, Chen Guojun, et al.An indoor positioning method and implementation based on spread spectrum acoustic wave[J]. Journal of Geomatics Science and Technology, 2020, 37(2): 216-220. [25] 苑清扬, 薛珂, 张博, 等. Gappy POD算法重构储能电池组核心温度及与BP神经网络预测能力对比[J]. 工程科学学报, 2024, 46(1): 166-177. Yuan Qingyang, Xue Ke, Zhang Bo, et al.Reconstruction of core temperature of energy storage battery by Gappy POD algorithm and comparison with BP neural network in prediction ability[J]. Chinese Journal of Engineering, 2024, 46(1): 166-177. [26] Chen Hongyun, Wang Xiang, Dong Xiaoyan, et al.Adjusting the energy-storage characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25609-25619. [27] Xiao Yizhou, Yang Yuanbo, Yang Shuai, et al.Simultaneous enhancement of dielectric properties and temperature stability in BaTiO3-based ceramics enabling X8R multilayer ceramic capacitor[J]. International Journal of Applied Ceramic Technology, 2023, 20(6): 3735-3742. [28] SCHWEBER B.Don’t let ESR waste power and cook capacitors[DB/OL]. EDN. 2018. [29] Silva Neto L P, Rossi J O, Barroso J J, et al. Characterization of ceramic dielectrics for sub-GHz applications in nonlinear transmission lines[C]//2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), Rio de Janeiro, Brazil, 2013: 1-5. [30] 谭林林, 黄学良, 黄辉, 等. 基于频率控制的磁耦合共振式无线电力传输系统传输效率优化控制[J]. 中国科学: 技术科学, 2011, 41(7): 913-919. Tan Linlin, Huang Xueliang, Huang Hui, et al.Optimal control of transmission efficiency of magnetically coupled resonant wireless power transmission system based on frequency control[J]. Scientia Sinica (Technologica), 2011, 41(7): 913-919. [31] https://www.murata.com/en-global/tool/library/keysight2? intcid5=com_xxx_xxx_cmn_nv_xxx. [32] 王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35. Wang Rongbing, Xu Hongyan, Li Bo, et al.Research on method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28(4): 31-35. [33] 于俊甫, 于珍, 魏连兴. 基于遗传算法的一对一与多行设施布置设计[J]. 现代制造工程, 2019(8): 108-113. Yu Junfu, Yu Zhen, Wei Lianxing.Research on layout planning of one-to-one layout model and multi-line layout model based on genetic algorithm[J]. Modern Manufacturing Engineering, 2019(8): 108-113.