Quantitative Relationship of Contaminated Soluble Salts of Insulators Using Laser-Induced Breakdown Spectroscopy
Wang Naixiao1, 2, Wang Xilin1, Jia Zhidong1, Wang Liming1, Huang Ronghui3
1. Engineering Laboratory of Power Equipment Reliability in Complicated Coastal Environment Graduate School at Shenzhen Tinghua University Shenzhen 518055 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China;; 3. Shenzhen Power Supply Co. Ltd Shenzhen 518038 China
Abstract:The contamination of the insulators’ surface can affect the operation of the high -voltage linerunning state. The detection of the existing insulator contamination relied on sampling in the power cut, taking back to lab and testing with element analysis equipment. Laser-induced breakdown spectroscopy(LIBS) with inductively coupled plasma spectroscopy(ICP) provided a new method for determining the contamination level of transmission line insulators and the quantitative relationship between the content of several salt ions and the laser spectrum in artificial contamination was studied. Results showed that the LIBS could directly monitor the content of the elementsin contamination. Mg, Ca and other elements concentration and spectral intensity of certainlines showed a strong linear relationship, while Na and Al hadno significant linear relationship between the soluble salt elements corresponding to the lines. The alkali metal elements such as Na was greatly affected by the matrix effect. The principal component analysis(PCA) was used to analyze the intensity and concentration of multiple elements. The result was good for classifying different contamination components.
王乃啸, 王希林, 贾志东, 王黎明, 黄荣辉. 基于激光诱导击穿光谱的绝缘子污秽可溶盐定量关系[J]. 电工技术学报, 2019, 34(3): 620-627.
Wang Naixiao, Wang Xilin, Jia Zhidong, Wang Liming, Huang Ronghui. Quantitative Relationship of Contaminated Soluble Salts of Insulators Using Laser-Induced Breakdown Spectroscopy. Transactions of China Electrotechnical Society, 2019, 34(3): 620-627.
[1] 关志成. 绝缘子与输电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [2] 江秀臣, 安玲, 韩振东. 等值盐密现场测量方法的研究[J]. 中国电机工程学报, 2000, 20(4): 40-43. Jiang Xiuchen, An Ling, Han Zhendong.Study on method of ESDD on-site measurement[J]. Proceedings of the CSEE, 2000, 20(4): 40-43. [3] 金立军, 张达, 段绍辉, 等. 基于红外与紫外图像信息融合的绝缘子污秽状态识别[J]. 电工技术学报, 2014, 29(8): 309-318. Jin Lijun, Zhang Da, DuanShaohui, et al. Recognition of contamination grades of insulators based on IR and UV image information fusion[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 309-318. [4] 罗凌, 张福增, 王黎明, 等. 高压直流瓷和玻璃绝缘子金属附件电解腐蚀试验方法[J]. 电工技术学报, 2015, 30(9): 103-111. Luo Ling, Zhang Fuzeng, Wang Liming, et al.Test methods for hardware electrolytic corrosion of porcelain and glass insulators on HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 103-111. [5] 李恒真, 刘刚, 李立浧. 绝缘子表面自然污秽成分分析及其研究展望[J]. 中国电机工程学报, 2011, 16(31): 128-137. Li Hengzhen, Liu Gang, Li Licheng.Study status and prospect of natural contamination component on insulator surface[J].Proceedings of the CSEE, 2011, 16(31): 128-137. [6] 苑吉河, 蒋兴良, 舒立春, 等. 盐/灰密对不同型式绝缘子交流人工污秽闪络特性的影响[J]. 中国电机工程学报, 2007, 27(6): 96-100. YuanJihe, Jiang Xingliang, ShuLichun, et al.Influence of salt/non-soluble deposit density on AC artificial pollution flashover performances of various types insulators[J]. Proceedings of the CSEE, 2007, 27(6): 96-100. [7] 郭裕钧, 蒋兴良, 孟志高, 等. 盐雾条件下染污绝缘子交流污闪特性[J]. 电工技术学报, 2017, 32(13): 248-254, 270. GuoYujun, Jiang Xingliang, MengZhigao, et al. AC pollution flashover characteristics of polluted insulators under salt fog conditions[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 248-254, 270. [8] 艾建勇, 金立军. 基于紫外图像的接触网棒瓷绝缘子污秽状态检测[J]. 电工技术学报, 2016, 31(10): 112-118. Ai Jianyong, Jin Lijun.Rod porcelain insulator filth state detection of catenary ased on ultraviolet image humidity[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 112-118. [9] Cremers D A, Radziemski L J.Handbook of laser-induced breakdown spectroscopy[M]. Chichester: John Wiley & Sons, 2006. [10] JiGuoli, Ye Pengchao, Shi Yijian, et al. Laser-induced breakdown spectroscopy for rapid discrimination of heavy metal contaminated seafood tegillarcagranosa[J]. Sensors, 2017, 17(11): 2655. [11] 王希林, 洪骁, 王晗, 等. 室温硫化硅橡胶的激光诱导击穿光谱特性与老化研究[J]. 中国电机工程学报, 2017, 37(10): 2774-2782. Wang Xilin, Hong Xiao, Wang Han, et al.Study of spectral characteristics and aging performance of room temperature vulcanzied silicone rubber using laser-induced breakdown spectroscopy[J]. Proceedings of the CSEE, 2017, 37(10): 2774-2782. [12] 王希林, 王晗, 赵晨龙, 等. 基于激光诱导击穿光谱的室温硫化硅橡胶材料成分研究[J]. 电工技术学报, 2016, 31(24): 96-104. Wang Xilin, Wang Han, Zhao Chenlong, et al.Composition analysis of room temperature vulcanized material with laser-induced breakdown spectroscopy technique[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 96-104. [13] Wang Xilin, Hong Xiao, Wang Han.Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy[J]. Journal of Physics D: Applied Physics, 2017, 50(41): 415601. [14] 袁欢, 宋立冬, 刘平, 等. 基于激光诱导击穿光谱的真空灭弧室真空度在线检测实验研究[J]. 高压电器, 2017, 53(3): 230-234. Yuan Huan, Song Lidong, Liu Ping, et al.Experimental study of vacuum degree online detection of vacuum interrupter based on laser-induced breakdown spectroscopy[J]. High Voltage Apparatus, 2017, 53(3): 230-234. [15] Gruber J, Heitz J, Strasser H, et al.Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy[J]. SpectrochimicaActa Part B-Atomic Spectroscopy, 2001, 56(6): 685-693. [16] Rusinkiewicz S, Levoy M.Efficient variants of the ICP algorithm[C]//IEEE Proceedings of International Conference on 3-D Digital Imaging and Modeling, 2001: 145-152. [17] Ciucci A, Corsi M, Palleschi V, et al.New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 1999, 53(8): 960-964. [18] 孙汉文. 原子光谱分析[M]. 北京: 高等教育出版社, 2002. [19] Breuer L, Popczun N J, Wucher A, et al.Reducing the matrix effect in molecular secondary ion mass spectrometry by laser post-ionization[J]. Journal of Physical Chemistry C, 2017, 121(36): 19705-19715. [20] Fan Juanjuan, Huang Dan, Wang Xin, et al.Research on the identification method of LTE condition in the laser-induced plasma[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3183-3187. [21] 辛仁轩, 宋崇立. 电荷注入检测器电感耦合等离子体光谱仪测定碱金属的分析性能[J].分析化学, 2001, 29(9): 1033-1035. XinRenxuan, Song Chongli. Analytical performance of determination for alkali metals by inductively coupled plasma-atomic emission spectrometer with charge injection device[J]. Chinese Journal of Analytical Chemistry, 2001, 29(9): 1033-1035. [22] Mermet J M.Ionic to atomic line intensity ratio and residence time in inductively coupled plasma atomic emission-spectrometry[J]. SpectrochimicaActa Part B-Atomic Spectroscopy, 1989, 44(11): 1109-1116. [23] Ratliff L P, Wagshul M E, Lett P D, et al.Spectroscopy of Na2 by photoassociation of laser cooled Na[J]. Physical Review Letters, 1993, 71(14): 2200. [24] 王茜蒨, 黄志文, 刘凯, 等. 基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究[J]. 光谱学与光谱分析, 2012, 32(12): 3179-3182. Wang Qianqian, Huang Zhiwen, Liu Kai, et al.Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3179-3182. [25] 孔海洋. 激光诱导击穿光谱数据特征自动提取方法研究[J]. 光谱学与光谱分析, 2015, 31(12): 3285-3288. Kong Haiyang.Study on the automatic extraction method of spectral data features in laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 31(12): 3285-3288.