Wind Tunnel Investigation on Segmented Transmission Tower
Yang Ting1, Xie Congzhen2, Liu Zhijian2, Shi Liuyang2, Zhu Wen2
1. Dongguan Power Supply Bureau of Guangdong Power Grid Co. Ltd Dongguan 523000 China; 2. School of Electric Power South China University of Technology Guangzhou 510640 China
Abstract:Transmission tower is an important power equipment for transmission line, the damage and collapse of transmission tower happen occasionally caused by typhoons on the coast of China during these years. In order to study the wind load of the tower, a research method of the wind load characteristics of the tower based on wind tunnel test was proposed. The segmented full-size tower models were used as the wind tunnel test models, the experimentswere conducted with different wind speeds and wind angles, the variation of the wind loads was obtained. The results show that the wind loads change with the wind speed exponentially at low wind speed, and the basis of the exponential function is different in different models; the wind loads is a sine function over the wind angle, and the period and amplitude of the function is different in different model; the longitudinal force on different parts of the tower changes distinctly with different maximum value according to the fitting function. The tests results are of some reference to the design of transmission tower.
[1] 张勇. 输电线路风灾防御的现状与对策[J]. 华东电力, 2006, 34(3): 28-31. Zhang Yong.Status quo of wind hazard prevention for transmission lines and countermeasures[J]. East China Electrical Power, 2006, 34(3): 28-31. [2] 张飞华, 黄卫菊, 武利会, 等. 强风作用下输电塔风致倒塔机理和抗风加固方法探讨[J]. 广西电力, 2011, 34(6): 78-81. Zhang Feihua, Huang Weiju, Wu Lihui, et al.Discussion on mechanism of transmission tower falling down under strong wind and reinforcement method[J]. Guangxi Electric Power, 2011, 34(6): 78-81. [3] Ballio G, Maberini F, Solari G.A 60 years old, 100m high steel tower: limit states under wind action[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1-3): 2089-2100. [4] Glanville M J, Kwok K C S. Dynamic characteristics and wind induced response of a steel frame tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(2): 133-149. [5] Okamura T, Ohkuma T, Hongo E.Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1): 53-63. [6] 刘群. 高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J]. 中国电力, 1997(9): 50-52. Liu Qun.Research of coupling vibration between steel tower frame and conductor for HV overhead lines[J]. Electric Power, 1997(9): 50-52. [7] 王树彬. 输电塔风效应及等效静风荷载的试验研究[D]. 广州: 华南理工大学, 2014. [8] 李正良, 肖正直, 韩枫, 等. 1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J]. 电网技术, 2008, 32(12): 1-5. Li Zhengliang, Xiao Zhengzhi, Han Feng, et al.Aeroelastic model design and wind tunnel tests of 1000kV Hanjiang long span transmission line system[J]. Power System Technology, 2008, 32(12): 1-5. [9] 谢强, 管政, 严承涌. 1000kV输电塔横风向振动风洞试验研究[J]. 电网技术, 2011, 35(5): 21-26. XieQiang, Guan Zheng, Yan Chengyong. Wind tunnel test on across-wind vibration of 1000kV UHV transmission tower[J]. Power System Technology, 2011, 35(5): 21-26. [10] 肖正直, 李正良, 汪之松, 等. 1000kV汉江大跨越塔线体系风洞试验与风振响应分析[J]. 中国电机工程学报, 2009, 29(34): 84-89. Xiao Zhengzhi, Li Zhengliang, Wang Zhisong, et al.Wind tunnel tests and wind-induced responses analysis of 1000kV Hanjiang long span transmission line system[J]. Proceedings of the CSEE, 2009, 29(34): 84-89. [11] 张庆华, 顾明, 黄鹏. 典型输电塔塔头风力特性试验研究[J]. 振动工程学报, 2008, 21(5): 452-457. Zhang Qinghua, Gu Ming, Huang Peng.Experiment on wind force on typical superstructures of latticed transmission tower[J]. Journal of Vibration Engineering, 2008, 21(5): 452-457. [12] 段杰, 王秀丽, 侯雨伸. 基于模糊专家系统的输电线路分段冰风荷载等效停运率模型[J]. 电工技术学报, 2016, 31(8): 220-228. DuanJie, Wang Xiuli, HouYushen. Piecewise equivalent model of ice disaster impact on outage rate of transmission lines using fuzzy expert system[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 220-228. [13] 杨靖波, 韩军科, 李茂华, 等. 特高压输电线路钢管塔计算模型的选择[J]. 电网技术, 2010, 34(1): 1-5. Yang Jingbo, Han Junke, Li Maohua, et al.Selection of calculation model for steel tubular tower of UHV power transmission line[J]. Power System Technology, 2010, 34(1): 1-5. [14] 谢强, 杨洁. 输电塔线耦联体系风洞试验及数值模拟研究[J].电网技术, 2013, 37(5): 1237-1243. XieQiang, Yang Jie. Wind tunnel test and numerical simulation on transmission tower-line coupling system[J]. Power System Technology, 2013, 37(5): 1237-1243. [15] Yang W W, Chang T Y P, Chang C C. An efficient wind field simulation technique for bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 67(97): 697-708. [16] 肖良成, 李新民, 江俊. 四分裂新月形覆冰导线的气动绕流特性分析[J]. 电工技术学报, 2014, 29(12): 261-267. Xiao Liangcheng, Li Xinmin, Jiang Jun.Study on aerodynamic characteristics of quad-bundled crescent-shape iced-conductors[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 261-267. [17] Battista R C, Rodrigues R S, Pfeil M S.Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(8): 1051-1067. [18] 刘敏, 孙杰, 杨宏青, 等. 湖北省不同地形条件下风随高度变化研究[J]. 气象, 2010, 36(4): 63-67. Liu Min, Sun Jie, Yang Hongqing, et al.The study on wind speed change with height under different terrain conditions in Hubei province[J]. Meteorology Monthly, 2010, 36(4): 63-67. [19] 王志春, 宋丽莉, 何秋生, 等. 风速随高度变化的曲线拟合[J]. 广东气象, 2007, 29(1): 13-15. Wang Zhichun, Song Lili, He Qiusheng, et al.Study on the curve fitting of wind speeds with height[J]. Guangdong Meteorology, 2007, 29(1): 13-15. [20] 李滨, 黄佳, 吴茵, 等. 基于气象信息粒还原的台风分时段短期负荷预测[J]. 电工技术学报, 2017, 32(10): 91-98. Li Bin, Huang Jia, Wu Yin, et al.Typhoon-period short term load forecasting based on particle reduction of weather information[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 91-98. [21] 潘峰, 陈稼苗, 聂建波, 等. 国内外规范输电线路铁塔风荷载特性对比[J]. 中国电力, 2013, 46(4): 37-42. Pan Feng, Chen Jiamiao, NieJianbo, et al. Contrast study of wind load characteristics for transmission towers based foreign standards[J]. Electric Power, 2013, 46(4): 37-42.