Abstract:The electrical characteristics of insulator are related to the degree of icing, but the methods of characterizing insulator icing level are various and cannot reflect the difference of insulator structure. This paper took porcelain insulator XP-70 and standard rotating conductor as the research objects. The method based on the equivalent collision coefficient of standard rotating conductors to characterize insulator icing was proposed and the numerical calculation model of the water droplets collision coefficient of insulator as well as the standard rotating conductor was established. Then the equivalent relationship of water droplets collision coefficient between insulator and the rotating conductor was analyzed and verified through the icing test. Research results show that, the larger the wind velocity and median volume diameter is, the larger the water droplets collision coefficient of insulator and rotating conductor is, and the smaller the water droplets collision coefficient ratio of insulator to standard rotating conductor is. In the same environment, the ice mass of insulators increases linearly with the increase of ice mass of standard rotating conductors, and the slope k1 is the ratio of insulator ice mass to standard rotating conductor ice mass. When the freezing coefficient is considered, the relative error between the theoretical ratio k of insulator ice mass to standard rotating conductors ice mass based on equivalent collision coefficient and experimental value k1 is less than 20%. Therefore, the research results can provide reference for the characterization of insulator icing degree.
张志劲, 张翼, 蒋兴良, 梁田, 胡建林. 基于标准旋转导体等效碰撞系数的绝缘子覆冰表征[J]. 电工技术学报, 2018, 33(21): 5119-5127.
Zhang Zhijin, Zhang Yi, Jiang Xingliang, Liang Tian, Hu Jianlin. Icing Characterization of Insulator Based on the Equivalent Collision Coefficient of Standard Rotating Conductors. Transactions of China Electrotechnical Society, 2018, 33(21): 5119-5127.
[1] Chen Weijiang, Cui Xiang.Foreword for the special section on AC and DC ultrahigh voltage technologies[J]. CSEE Journal of Power and Energy Systems, 2015, 1(3): 1-2. [2] Farzaneh M, Kiernicki J.Ice accretion on energized line insulators[J]. International Journal of Offshore and Polar Engineering, 1992, 2(3): 228-233. [3] Hydro quebec committee of experts. January 1998 ice storm[R]. Report for Hydro Quebec, 1998. [4] 黄强, 王家红, 欧名勇. 2005 年湖南电网冰灾事故分析及其应对措施[J]. 电网技术, 2005, 29(24): 16-19. Huang Qiang, Wang Jiahong, Ou Mingyong.Analysis on accidents caused by icing damage in hunan power grid in 2005 and its countermeasures[J]. Power System Technology, 2005, 29(24): 16-19. [5] 李庆峰, 范峥, 吴穹, 等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术, 2008 , 32(9): 33-36. Li Qingfeng, Fan Zheng, Wu Qiong, et al.Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China[J]. Power System Technology, 2008, 32(9): 33-36. [6] Myers T G, Charpin J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500. [7] 胡琴, 袁伟, 舒立春. 电压类型对复合绝缘子覆冰及闪络特性的影响[J]. 电工技术学报, 2015, 30(3): 268-276. Hu Qin, Yuan Wei, Shu Lichun.Influence of voltage types on composite insulator icing and flashover characteristics[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 268-276. [8] 蒋兴良, 胡玉耀, 汪泉霖, 等. 覆冰绝缘子导电离子分布规律[J]. 电工技术学报, 2017, 32(15): 199-206. Jiang Xingliang, Hu Yuyao, Wang Quanlin, et al.Distribution of conductive ions in ice-covered composite insulators[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 199-206. [9] 蒋兴良, 郭思华, 胡建林, 等. 不同覆雪形态对悬式绝缘子直流负极性闪络特性的影响[J]. 电工技术学报, 2017, 33(2): 451-458. Jiang Xingliang, Guo Sihua, Hu Jianlin, et al.Influence of snow accretion with different shape on negative DC flashover characteristics of suspension insulators[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 451-458. [10] 蒋兴良. 覆冰绝缘子交流放电特性与放电过程的研究[D]. 重庆: 重庆大学, 1988. [11] 武得会, 蒋兴良, 孙才新, 等. XZP-160直流绝缘子低气压下覆冰闪络特性[J]. 高电压技术, 2002, 28(5): 5-7. Wu Dehui, Jiang Xingliang, Sun Caixin, et a1. DC flashover performance and voltage correction of iced XZP-160 insulator at low atmospheric pressure[J]. High Voltage Engineering, 2002, 28(5): 5-7. [12] 孙才新, 司马文霞, 舒立春. 大气环境与电气外绝缘[M]. 北京: 中国电力出版社, 2002. [13] 于昕哲, 周军, 刘博, 等. 全尺寸超、特高压交流绝缘子串的覆冰闪络特性[J]. 高电压技术, 2013, 39(6): 1454-1459. Yu Xinzhe, Zhou Jun, Liu Bo, et al.Icing flashover characteristic of full-scale EHV and UHV AC insulator strings[J]. High Voltage Engineering, 2013, 39(6): 1454-1459. [14] 赵世华, 蒋兴良, 张志劲, 等. 环境参数对110 kV复合绝缘子覆冰增长过程的影响[J]. 高电压技术, 2012, 38(10): 2575-2581. Zhao Shihua, Jiang Xingliang, Zhang Zhijin, et al.Impact of environmental parameters on the icing process of 110 kV composite insulators[J]. High Voltage Engineering, 2012, 38(10): 2575-2581. [15] 张志劲, 蒋兴良, 胡建林, 等. 覆冰程度对复合绝缘子直流覆冰闪络特性的影响[J]. 高电压技术, 2009, 35(10): 2545-2550. Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al.Influence of icing degree on DC icing flashover performance of composite insulator[J]. High Voltage Engineering, 2009, 35(10): 2545-2550. [16] 向泽, 蒋兴良, 胡建林, 等. 雪峰山试验站自然条件下导线覆冰厚度形状校正系数[J]. 高电压技术, 2014, 40(11): 3606-3611. Xiang Ze, Jiang Xingliang, Hu Jianlin, et al.Shape correction coefficient of the icing thickness on conductors under natural icing condition at Xuefeng mountain test station[J]. High Voltage Engineering, 2014, 40(11): 3606-3611. [17] Fu Ping, Farzaneh M, Bouchard G.Two-dimensional modeling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146. [18] 蒋兴良, 肖丹华, 陈凌, 等. 基于界面移动理论的导线覆冰过程分程[J]. 高电压技术, 2011, 37(4): 982-989. Jiang Xingliang, Xiao Danhua, Chen Ling, et al.Physical process of icing on fixed wires by interface movement theory[J]. High Voltage Engineering, 2011, 37(4): 982-989. [19] Langmuir I, Blodgett K.A mathematical investigation of water droplet trajectories[J]. Collected Works of Irving Langmuir, 1946, 10(26): 348-393. [20] 张暕, 何青. 输电线路覆冰时导线表面形状对碰撞系数的影响[J]. 电工技术学报, 2016, 31(13): 209-217. Zhang Jian, He Qing.Influence of conductor surface shape on collision coefficient during transmission line icing[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 209-217. [21] 陈凌. 旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究[D]. 重庆: 重庆大学, 2011. [22] 蒋兴良, 韩兴波, 胡玉耀, 等. 冰棱生长对绝缘子覆冰过程的影响分析[J].电工技术学报, 2017, DOI: 10.19595/j.cnki.1000-6753.tces.170372. Jiang Xingliang, Han Xingbo, Hu Yuyao, et al.Analysis of icicles influences on icing process of insulators[J]. Transactions of China Electrotechnical Society, 2017, DOI: 10.19595/j.cnki.1000-6753.tces.170372. [23] 薛艺为, 阳林, 郝艳捧, 等. 输电线路悬式复合绝缘子雨凇与轻雾凇覆冰形态和覆冰过程对比研究[J]. 电工技术学报, 2016, 31(8): 212-219. Xue Yiwei, Yang Lin, Hao Yanpeng, et al.A comparative study on icing morphology and process of glaze and light rime in suspension composite insulators on transmission lines[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 212-219. [24] 蒋兴良, 潘杨, 汪泉霖, 等. 基于等效直径的复合绝缘子覆冰特性与结构参数分析[J]. 电工技术学报, 2017, 32(7): 190-196. Jiang Xingliang, Pan Yang, Wang Quanlin, et al.Research on icing characteristics of composite insulator and structural parameter analysis based on equivalent diameter[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 190-196. [25] 张志劲, 黄海舟, 蒋兴良, 等. 基于流体力学的不同型式绝缘子覆冰增长过程分析[J]. 电工技术学报, 2012, 27(10): 35-43. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al.Analysis of ice growth on different type insulators based on analysis of ice growth on different type insulators based on fluid dynamics[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 35-43. [26] 张志劲, 黄海舟, 蒋兴良, 等. 复合绝缘子雾凇覆冰厚度预测模型[J]. 电工技术学报, 2014, 29(6): 318-325. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al.Model for predicting thickness of rime accreted on composite insulators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 318-325. [27] 黄海舟. 绝缘子覆冰增长特性及干增长覆冰预测模型研究[D]. 重庆: 重庆大学, 2012. [28] 巢亚锋. 分裂导线和多串并联绝缘子覆冰模型与影响因素的研究[D]. 重庆: 重庆大学, 2011.