Abstract:Wireless power transfer system needs to transfer power over wide coupling coefficient range. Traditional series-series (SS) compensation method is sensitive to the variation of coupling coefficient, which causes deep impact on the transferred power level. Traditional topology is not suitable for some applications where the coupling coefficient varies greatly. In addition, traditional SS topology exists the potential safety hazard of underloading. In this paper, a primary-side detuned SS compensation method is proposed to provide stable power transfer over wide coupling coefficient range. The power characteristic is analyzed, and the result indicates that this system maintains high misalignment tolerance and avoids the safe problem of underloading. Considering the rated power and power fluctuation, a parameter design method is put forward. Then compared with the traditional fully tuned SS system, the sensitivities of compensated capacity and the state of charge (SOC) are studied. The impact of this detuned method on the efficiency of resonant tank is developed. Finally, experimental results on a 150W prototype verify the proposed primary-side detuned SS topology, where the power transfer is maintained above 80% of its nominal power level and the efficiency of system is more than 76% when the coupling coefficient varies 200%.
胡宏晟, 蔡涛, 段善旭, 刘明海, 丰昊. 用于WPT系统的一次侧失谐SS型补偿拓扑及其参数设计方法[J]. 电工技术学报, 2017, 32(18): 73-82.
Hu Hongsheng, Cai Tao, Duan Shanxu, Liu Minghai, Feng Hao. Study of the Primary Side Detuned Series-Series Compensated Topology and Parameter Design for WPT System. Transactions of China Electrotechnical Society, 2017, 32(18): 73-82.
[1] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al. Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [2] 王振亚, 王学梅, 张波, 等. 电动汽车无线充电技术的研究进展[J]. 电源学报, 2014, 12(3): 27-32. Wang Zhenya, Wang Xuemei, Zhang Bo, et al. Advances of wireless charging technology in electric vehicle[J]. Journal of Power Supply, 2014, 12(3): 27-32. [3] 张波, 黄润鸿, 丘东元. 磁谐振中距离无线电能传输及关键科学问题[J]. 电源学报, 2015, 13(4): 1-7. Zhang Bo, Huang Runhong, Qiu Dongyuan. Key problems of midrange wireless power transfer via magnetic resonances[J]. Journal of Power Supply, 2015, 13(4): 1-7. [4] 孙跃, 王智慧, 戴欣, 等. 非接触电能传输系统的频率稳定性研究[J]. 电工技术学报, 2005, 20(11): 56-59. Sun Yue, Wang Zhihui, Dai Xin, et al. Study of frequency stability of contactless power transmission system[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 56-59. [5] 赵俊锋, 黄学良. 小功率无线电能传输系统应用研究[J]. 电工技术学报, 2015, 30(14): 470-474. Zhao Junfeng, Huang Xueliang. Application research of low-power wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 470-474. [6] 李振杰, 逯仁贵, 朱春波, 等. 远距离小功率无线电能传输系统性能优化研究[J]. 电工技术学报, 2015, 30(增刊1): 209-214. Li Zhengjie, Lu Rengui, Zhu Chunbo, et al. Study on the performance optimization of long range and low power wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 209-214. [7] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al. Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [8] Hui S Y R, Ho W W C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J]. IEEE Transactions on Power Electronics, 2005, 20(3): 620-627. [9] Liu X, Hui S Y. Optimal design of a hybrid winding structure for planar contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 455-463. [10] Budhia M, Boys J T, Covic G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [11] 孙跃, 李云涛, 叶兆虹, 等. 三线圈ICPT系统中继线圈的位置优化[J]. 电工技术学报, 2016, 31(13): 164-171. Sun Yue, Li Yuntao, Ye Zhaohong, et al. Optimi- zation for relay coil location of 3-coil inductively coupled power transfer system[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 164-171. [12] Zheng C, Ma H, Lai J S, et al. Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6108-6119. [13] 戴欣, 李璐, 余细雨, 等. 基于正四面体的无线电能传输系统多自由度电能拾取机构[J]. 中国电机工程学报, 2016, 36(23): 6460-6467. Dai Xin, Li Lu, Yu Xiyu, et al. Multi-degree- of-freedom pick-up mechanism of wireless power transfer system based on the regular tetrahedron[J]. Proceedings of the CSEE, 2016, 36(23): 6460-6467. [14] Elliott G A J, Raabe S, Covic G A, et al. Multiphase pickups for large lateral tolerance contactless power- transfer systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1590-1598. [15] 侯佳, 陈乾宏, 任小永, 等. S/SP非接触谐振变换器的时域特性分析[J]. 中国电机工程学报, 2015, 35(8): 1983-1992. Hou Jia, Chen Qianhong, Ren Xiaoyong, et al. Time- domain analysis of S/SP compensated contactless resonant converters[J]. Proceedings of the CSEE, 2015, 35(8): 1983-1992. [16] Zhu Q, Guo Y, Wang L, et al. Improving the misalignment tolerance of wireless charging system by optimizing the compensate capacitor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4832-4836. [17] Zhao J, Cai T, Duan S, et al. A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8343-8358. [18] Feng H, Cai T, Duan S, et al. An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(10): 6591-6601. [19] Gao W, Chen Q, Geng Y, et al. Equivalency analysis of primary series- and series-parallel-compensated contactless resonant converter[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017: 3259-3264. [20] 赵锦波, 蔡涛, 段善旭, 等. 适用于分段式动态无线充电的接力方法[J]. 电力系统自动化, 2016, 40(16): 64-70. Zhao Jinbo, Cai Tao, Duan Shanxu, et al. Relay control method for sectional track based dynamic wireless charging system[J]. Automation of Electric Power Systems, 2016, 40(16): 64-70. [21] Sohn Y H, Choi B H, Lee E S, et al. General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6030-6045. [22] Diekhans T, De Doncker R W. A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6320-6328.