Abstract:The double uncertainty of wind power output and demand response of time of use (TOU) bring great difficulty to the system operation scheduling. Based on the combination of fuzzy random chance constrained goal programming (FRCCGP) and preemptive goal programming (PGP), the paper established the bi-level dispatch model considering fuzziness and randomness of the prediction error. First of all, the paper deeply studied the uncertain factors of system operation and model the double uncertainty of the prediction error. In addition, the chance constrained goal programming was introduced to form the reserve deviation indexes. The bi-level model based on PGP identified the rigorous priority level of the safety goals and the economic goals. Finally, the validity of the model was verified with case studies and results showed that the bi-level model could optimize the operation economy on the basic of meeting the security demand.
[1] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040. Xue Yusheng, Lei Xing, Xue Feng, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040. [2] 艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195. Ai Xiaomeng, Han Xingning, Wen Jingyu, et al.Robust unit commitment considering wind power ramp events[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 188-195. [3] Wang Yang, Xia Qing, Kang Chongqing.Unit commitment with volatile node injections by using interval optimization[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1705-1713. [4] Wu L, Shahidehpour M, Li Z.Comparison of scenario-based and interval optimization approaches to stochastic SCUC[J]. IEEE Transactions on Power Systems, 2012, 27(2): 913-921. [5] 刘文颖, 徐鹏, 赵子兰, 等. 基于区间估计的风电出力多场景下静态电压安全域研究[J]. 电工技术学报, 2015, 30(3): 172-178. Liu Wenying, Xu Peng, Zhao Zilan, et al.A research of static voltage stability region in wind power scenario based on interval estimation[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 172-178. [6] 徐秋实, 邓长虹, 赵维兴, 等. 含风电电力系统的多场景鲁棒调度方法[J]. 电网技术, 2014, 38(3): 653-661. Xu Qiushi, Deng Changhong, Zhao Weixing, et al.A multi-scenario robust dispatch method for power grid integrated with wind farms[J]. Power System Technology, 2014, 38(3): 653-661. [7] 高红均, 刘俊勇, 刘继春, 等. 基于坏场景集的含风电机组组合模型[J]. 电力系统保护与控制, 2013, 41(10): 27-32. Gao Hongjun, Liu Junyong, Liu Jichun, et al.The unit commitment with wind power based on the bad scenario set[J]. Power System Protection & Control, 2013, 41(10): 27-32. [8] 赵书强, 王扬, 徐岩, 等. 基于机会约束目标规划的高风电接入比例下大规模储能与火电协调调度[J]. 中国电机工程学报, 2016, 36(4): 969-977. Zhao Shuqiang, Wang Yang, Xu Yan, et al.Coordinated dispatch of large scale energy storage system and thermal generation in high wind power penetration level system based on chance constrained goal programming[J]. Proceedings of the CSEE, 2016, 36(4): 969-977. [9] 蔺海明, 刘天琪, 李兴源, 等. 考虑暂态稳定的风电穿透功率极限计算模型[J]. 电力系统保护与控制, 2013, 41(20): 47-52. Lin Haiming, Liu Tianqi, Li Xingyuan, et al.A computational model of wind power penetration limit considering transient stability[J]. Power System Protection & Control, 2013, 41(20): 47-52. [10] 段翩, 朱建全, 刘明波. 基于双层模糊机会约束规划的虚拟电厂优化调度[J]. 电工技术学报, 2016, 31(9): 58-67. Duan Pian, Zhu Jianquan, Liu Mingbo.Optimal dispatch of virtual power plant based on bi-level fuzzy chance constrained programming[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 58-67. [11] 姜欣, 陈红坤, 回俊龙, 等. 计及弃风的风电场最优装机容量[J]. 电工技术学报, 2016, 31(18): 160-168. Jiang Xin, Chen Hongkun, Hui Junlong, et al.Optimal installed capacity of wind farm considering wind power curtailment[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 160-168. [12] 杨楠, 王波, 刘涤尘, 等. 考虑柔性负荷调峰的大规模风电随机优化调度方法[J]. 电工技术学报, 2013, 28(11): 231-238. Yang Nan, Wang Bo, Liu Dichen, et al.Large-scale wind power stochastic optimization scheduling method considering flexible load peaking[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 231-238. [13] 陈奇芳, 刘念, 陈征, 等. 考虑充电需求与随机事件的光伏充电站实时运行策略[J]. 电工技术学报, 2016, 31(18): 142-150. Chen Qifang, Liu Nian, Chen Zheng, et al.Real-time operation strategy for PV-based ev charging station considering charging demand and random events[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 142-150. [14] 孙宇军, 李扬, 王蓓蓓, 等. 计及不确定性需求响应的日前调度计划模型[J]. 电网技术, 2014, 38(10): 2708-2714. Sun Yujun, Li Yang, Wang Beibei, et al.A day-ahead scheduling model considering demand response and its uncertainty[J]. Power System Technology, 2014, 38(10): 2708-2714. [15] Wang Qianfan, Wang Jianhui, Guan Yongpei.Stochastic unit commitment with uncertain demand response[J]. IEEE Transactions on Power Systems, 2013, 28(1): 562-563. [16] 牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34(22): 3630-3637. Niu Wenjuan, Li Yang, Wang Beibei.Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014, 34(22): 3630-3637. [17] Zhao Chaoyue, Wang Jianhui, Watson J P, et al.Multi-stage robust unit commitment considering wind and demand response uncertainties[J]. IEEE Transactions on Power Systems, 2012, 28(3): 2708-2717. [18] Yang Shengchun, Zeng Dan, Ding Hongfa, et al.Multi-objective demand response model considering the probabilistic characteristic of price elastic load[J]. Energies, 2016, 9(2): 80-93. [19] 吴杰康, 唐力. 含不确定性负荷的水火电力系统随机优化调度[J]. 中国电机工程学报, 2012, 32(28): 36-43. Wu Jiekang, Tang Li.Stochastic optimization scheduling method for hydrothermal power systems with stochastic loads[J]. Proceedings of the CSEE, 2012, 32(28): 36-43. [20] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533-2543. Zheng Le, Hu Wei, Lu Qiuyu, et al.Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533-2543. [21] 刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003.