Multi-Dimensional Diagnosis of Transformer Fault Sample and Credibility Analysis
Li Dianyang1,2, Zhang Yujie1,3, Feng Jian1, Wang Shanyuan1
1. Information Science and Engineering College Northeastern University Shenyang 110819 China; 2. State Grid Liaoning Electric Power Limited Company Shenyang 110006 China; 3. State Grid Xinxiang Electric Power Supply Company Xinxiang 453005 China
Abstract:Power transformer is the core equipment of power system, and its safe and stable operation is of great significance to power system. Online fault diagnosis of power transformers is an important method to realize real-time status analysis of power transformers. At present, the selection of features subset for transformer fault diagnosis mainly adopts heuristic-based method, which simplifies the selection process compared to traversal algorithms, but it still consumes a lot of computing power. Moreover, the research of hybrid fault diagnosis motheds for power transformer focuses on the improvement of the diagnosis effect in all samples, and does not pay attention to the credibility analysis of the diagnosis results in single sample. In order to solve this problem, this paper proposed a transformer state analysis method that combines autonomous discretization and optimization of data distribution signs, and single-event multi-model fusion analysis. Proved by examples, this method can effectively analyze the data distribution of each feature, perform feature optimization, and can get the operating status and reliability of the transformer from the perspective of a single event.
[1] 李恩文, 王力农, 宋斌, 等. 基于混沌序列的变压器油色谱数据并行聚类分析[J]. 电工技术学报, 2019, 34(24): 5104-5114. Li Enwen, Wang Linong, Song Bin, et al.Parallel clustering analysis of dissolved gas analysis data based on chaotic seduences[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5104-5114. [2] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70. Li Ying, Shu Naiqiu.Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 64-70. [3] Susa D, Palola J, Lehtonen, et al. Temperature rises in an OFAF transformer at OFAN cooling mode in service[J]. IEEE transactions on Power Delivery, 2005, 20(4): 2517-2525. [4] 刘云鹏, 付浩川, 许自强, 等. 基于AdaBoost-RBF算法与DSmT的变压器故障诊断技术[J]. 电力自动化设备, 2019, 39(6): 166-172. Liu Yunpeng, Fu Haochuan, Xu Ziqiang, et al.Transformer fault diagnosis technology based on AdaBoost-RBF algorithm and DSmT[J]. Electric Power Automation Equipment, 2019, 39(6): 166-172. [5] 赵文清, 祝玲玉, 高树国, 等. 基于多源信息融合的电力变压器故障诊断方法研究[J]. 电力信息与通信技术, 2018, 16(10): 25-30. Zhao Wenqing, Zhu Lingyu, Gao Shuguo, et al.Research on fault diagnosis method of power transformer based on multi-source information fusion[J]. Electric Power Information and Communication Technology, 2018, 16(10): 25-30. [6] Kari T, Gao Wensheng, Zhao Dongbo, et al.An integrated method of ANFIS and dempster-shafer theory for fault diagnosis of power transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 360-371. [7] 邓祥力, 谢海远, 熊小伏, 等. 基于支持向量机和有限元分析的变压器绕组变形分类方法[J]. 中国电机工程学报, 2015, 35(22): 5778-5786. Deng Xiangli, Xie Haiyuan, Xiong Xiaofu, et al.Classification method of transformer winding deformation based on SVM and finite element analysis[J]. Proceedings of the CSEE, 2015, 35(22): 5778-5786. [8] 司马莉萍, 舒乃秋, 李自品, 等. 基于SVM和D-S证据理论的电力变压器内部故障部位识别[J]. 电力自动化设备, 2012, 32(11): 72-77. Sima Liping, Shu Naiqiu, Li Zipin, et al.Identification of interior fault position based on SVM and D-S evidence theory for electric transformer[J]. Electric Power Automation Equipment, 2012, 32(11): 72-77. [9] Kari T, Gao Wensheng, Zhao Dongbo, et al.Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm[J]. IET Generation, Transmission & Distribution, 2018, 12(21): 5672-5680. [10] 朱永利, 申涛, 李强. 基于支持向量机和DGA的变压器状态评估方法[J]. 电力系统及其自动化学报, 2008, 20(6): 111-115. Zhu Yongli, Shen Tao, Li Qiang.Transformer condition assessment based on support verctor machine and DGA[J]. Proceedings of the CSU-EPSA, 2008, 20(6): 111-115. [11] Wu X, Kumar V, Quinlan J R, et al.Top 10 algorithms in data mining[J]. Knowledge and Information System, 2008, 14(1): 1-37. [12] 胡青, 孙才新, 杜林, 等. 核主成分分析与随机森林相结合的变压器故障诊断方法[J]. 高电压技术, 2010, 36(7): 1725-1729. Hu Qing, Sun Caixin, Du Lin, et al.Transformer fault diagnosis method using random froests and kernel principle component analysis[J]. High Voltage Engineering, 2010, 36(7): 1725-1729. [13] 吴杰康, 覃炜梅, 梁浩浩, 等. 基于自适应极限学习机的变压器故障识别方法[J]. 电力自动化设备, 2019, 39(10): 181-186. Wu Jiekang, Qin Weimei, Liang Haohao, et al.Transformer fault identification method based on self-adaptive extreme learning machine[J]. Electric Power Automation Equipment, 2019, 39(10): 181-186. [14] 李春茂, 周妺末, 袁海满, 等. 基于DGA的粗糙集与决策信息融合变压器故障诊断[J]. 电工电能新技术, 2018, 37(1): 84-90. Li Chunmao, Zhou Momo, Yuan Haiman, et al.Fault diagnosis of transformer based on rough set theory and decision information fusion[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1): 84-90. [15] 张景明, 肖倩华, 王时胜. 融合粗糙集和神经网络的变压器故障诊断[J]. 高电压技术, 2007, 33(8): 122-125. Zhang Jingming, XiaoQianhua, Wang Shisheng. Transformer fault diagnosis by combination of rough set and neural network[J]. High Voltage Engineering, 2007, 33(8): 122-125. [16] 张育杰, 李典阳, 冯健, 等. 基于多模型选择性融合的变压器在线故障诊断[J]. 电力系统自动化, 2021, 45(13): 95-101. Zhang Yujie, Li Dianyang, Feng Jian, et al.Transformer online fault diagnosis based on selective hybrid of multiple models[J]. Automation of Electric Power Systems, 2021, 45(13): 95-101. [17] Zhou Zhihua.Ensemble methods: foundations and algorithms[M]. Florida: Chapman and Hall/CRC, 2012. [18] 王雪, 韩韬. 基于贝叶斯优化随机森林的变压器故障诊断[J]. 电测与仪表, 2021, 58(6): 167-173. Wang Xue, Han Tao.Transformer fault diagnosis based on Bayesian optimized random forest[J]. Electrical Measurement & Instrumentation, 2021, 58(6): 167-173. [19] 张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136. Zhang Tingting, Yu Ming, Li Bin, et al.Capacity prediction of lithium-ion batteries based on wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136. [20] 徐心愿, 王云冲, 沈建新. 基于最大转矩电流比的同步磁阻电机DTC-SVM控制策略[J]. 电工技术学报, 2020, 35(2): 246-254. Xu Xinyuan, Wang Yunchong, Shen Jianxin.Direct torque control-Space vector modulation control Strategy of synchronous reluctance motor based on maximum torque per-ampere[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 246-254. [21] 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10): 2161-2168. Fan Xianhao, Liu Jiefeng, Zhang Yiyi, et al.Aging evaluation of transformer oil-immersed insulation combining frequency domain spectroscopy and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2161-2168. [22] 汪可, 李金忠, 张书琦, 等. 变压器故障诊断用油中溶解气体新特征参量[J]. 中国电机工程学报, 2016, 36(23): 6570-6578, 6625. Wang Ke, Li Jinzhong, Zhang Shuqi, et al.New features derived from dissolved gas analysis for fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2016, 36(23): 6570-6578, 6625.