Optimal Control Method for Accurate and Fast Suppression of Unbalanced Zero-Sequence Voltage and Voltage Arc Suppression Full Compensation
Liu Baowen1, Zeng Xiangjun2, Zhang Huifen3, Ma Hongzhong1
1. College of Energy and Electrical Engineering Hohai University Nanjing 211100 China; 2. Hunan Province Key Laboratory of Smart Grids Operation and Control Changsha University of Science and Technology Changsha 410114 China; 3. School of Automation and Electrical Engineering University of Jinan Jinan 250022 China
Abstract:The existing methods of unbalanced zero sequence voltage suppression in distribution network need multiple current injection and gradual tracking suppression, which have the disadvantages of complex control process and slow convergence speed. When single-phase grounding fault occurs, the traditional voltage arc suppression method does not take into account the influence of three-phase distribution parameter asymmetry of power grid, and fails to completely suppress the fault phase voltage to zero, resulting in residual current in grounding point, which can not achieve 100% arc suppression. Based on the mechanism of zero sequence voltage variation induced by injection current, this paper realizes the on-line measurement of natural unbalanced current in distribution network, and demonstrates the influence of asymmetric distribution parameters of three phases on residual current in distribution network. Methods of fast and accurate suppression of unbalanced zero sequence voltage and full compensation of voltage arc suppression were proposed by adjusting the injection current only once, and the optimal control scheme of ground fault determination, zero sequence voltage suppression and arc suppression were given. Theoretical and simulation results show that this method can accurately and quickly suppress the unbalanced zero sequence voltage to 0 without multiple parameter adjustments during normal operation of power grid, and can compensate the residual current generated by asymmetric three-phase to ground distribution parameters of power grid in case of single-phase to ground fault, which can completely suppress the voltage of fault phase to 0 and realize 100% voltage arc suppression full compensation.
刘宝稳, 曾祥君, 张慧芬, 马宏忠. 不平衡零序电压快速精准抑制与电压消弧全补偿优化控制方法[J]. 电工技术学报, 2022, 37(3): 645-654.
Liu Baowen, Zeng Xiangjun, Zhang Huifen, Ma Hongzhong. Optimal Control Method for Accurate and Fast Suppression of Unbalanced Zero-Sequence Voltage and Voltage Arc Suppression Full Compensation. Transactions of China Electrotechnical Society, 2022, 37(3): 645-654.
[1] 要涣年, 曹梅月. 电力系统谐振接地[M]. 北京: 中国电力出版社, 2000. [2] 薛永端, 李广, 徐丙垠. 利用熄弧后暂态信息测量谐振接地系统的对地电容[J]. 电工技术学报, 2020, 35(7): 1521-1528. Xue Yongduan, Li Guang, Xu Bingyin.Measuring method of capacitance to ground in resonant grounding system based on transient information after arc extinguishing[J]. Transactions of China Electrote-chnical Society, 2020, 35(7): 1521-1528. [3] Zeng Xiangjun, Yu Kun, Wang Yuanyuan, et al.A novel single phase grounding fault protection scheme without threshold setting for neutral ineffectively earthed power systems[J]. CSEE Journal of Power and Energy Systems, 2016, 2(3): 73-81. [4] 董俊, 李一凡, 束洪春, 等. 配电网馈出线路单相永久性接地故障性质辨识方法[J]. 电工技术学报, 2020, 35(21): 4576-4585. Dong Jun, Li Yifan, Shu Hongchun, et al.Study on identification method of single phase permanent ground fault in distribution network feedout line[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4576-4585. [5] 李晓波, 刘建华, 牟龙华, 等. 6~10 kV配电网微机型电容电流测试仪的研制[J]. 高电压技术, 2007, 33(3): 99-103. Li Xiaobo, Liu Jianhua, Mu Lunghua, et al.Measurement system of capacitive current for 6~10 kV distribution network based on microcomputer[J]. High Voltage Engineering, 2007, 33(3): 99-103. [6] 庞清乐, 孙同景, 穆健, 等. 气隙调感式消弧线圈控制系统的设计[J]. 高电压技术, 2006, 32(4): 5-10. Pang Qingle, Sun Tongding, Mu Jian, et al.Design of air gap inductance regulation arc-suppression coil control system[J]. High Voltage Engineering, 2006, 32(4): 5-10. [7] 陈忠仁, 吴维宁, 张勤, 等. 调匝式消弧线圈自动调谐新方法[J]. 电力系统自动化, 2005, 29(24): 75-78. Chen Zhongren, Wu Weining, Zhang Qin, et al.New automatic tuning method for multi-tap arc-suppression coil[J]. Automation of Electric Power Systems, 2005, 29(24): 75-78. [8] 唐轶, 陈奎, 陈庆, 等. 单相接地故障全电流补偿的研究[J]. 中国矿业大学学报, 2003, 32(5): 558-562. Tang Yi, Chen Kui, Chen Qing, et al.Research on the full current compensation of one-phase-to-ground fault[J]. Journal of China University of Mining & Technology, 2003, 32(5): 558-562. [9] 曲轶龙, 董一脉, 谭伟璞, 等. 基于单相有源滤波技术的新型消弧线圈的研究[J]. 继电器, 2007, 35(3): 29-33. Qu Yilong, Dong Yimai, Tan Weipu, et al.Research on new type arc-suppression coil based on single phase active power filter technology[J]. Relay, 2007, 35(3): 29-33. [10] 刘宝稳, 马宏忠, 沈培锋, 等. 新型接地故障基波电流全补偿柔性控制系统[J]. 中国电机工程学报, 2016, 36(9): 2322-2330. Liu Baowen, Ma Hongzhong, Shen Peifeng, et al.New flexible control system of full compensation single-phase ground fault fundamental current[J]. Proceedings of the CSEE, 2016, 36(9): 2322-2330. [11] 杨磊, 曾祥君, 喻锟, 等. 新型谐振接地系统接地故障全补偿方法[J]. 电力自动化设备, 2018, 38(11): 57-62. Yang Lei, Zeng Xiangjun, Yu Kun.Novel method of full compensation for grounding fault of resonant grounding system[J]. Electric Power Automation Equipment, 2018, 38(11): 57-62. [12] 曾祥君, 王媛媛, 李健, 等. 基于配电网柔性接地控制的故障消弧与线路保护新原理[J]. 中国电机工程学报, 2012, 32(16): 137-143. Zeng Xiangjun, Wang Yuanyuan, Li Jian, et al.Novel principle of faults arc extinguishing & feeder protection based on flexible grounding control for distribution networks[J]. Proceedings of the CSEE, 2012, 32(16): 137-143. [13] 陈勇, 曹伟炜, 柏彬, 等. MMC-UPFC 单相接地故障下运行特性分析及整体保护策略设计[J]. 电工技术学报, 2019, 34(3): 599-610. Chen Yong, Cao Weiwei, Bai Bin, et al.Operation characteristics analysis under single-phase grounding fault and overall protection scheme design of MMC-UPFC device[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 599-610. [14] 郭谋发, 陈静洁, 张伟骏, 等. 基于单相级联H桥变流器的配电网故障消弧与选线新方法[J]. 电网技术, 2015, 39(9): 2677-2684. Gou Moufa, Chen Jingjie, Zhang Weijun, et al.A novel approach for fault arc extinguishing and feeder selection in distribution networks based on single- phase cascade H-bridge converter[J]. Power System Technology, 2015, 39(9): 2677-2684. [15] 刘维功, 薛永端, 徐丙垠, 等. 可适应线路结构动态变化的有源消弧算法[J]. 电网技术, 2014, 38(7): 2008-2013. Liu Weigong, Xue Yongduan, Xu Bingyin, et al.An active arc-suppression algorithm adaptable to dynamic structure variation of transmission line[J]. Power System Technology, 2014, 38(7): 2008-2013. [16] 周兴达, 陆帅. 一种基于消弧线圈和静止同步补偿器协同作用的配电网消弧结构与方法[J]. 电工技术学报, 2019, 34(6): 1251-1262. Zhou Xingda, Lu Shuai.An arc-suppression method based on the coordinated operation of the Petersen coil and the static synchronous compensator in distribution networks[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1251-1262. [17] 曾祥君, 胡京莹, 王媛媛, 等. 基于柔性接地技术的配电网三相不平衡过电压抑制方法[J]. 中国电机工程学报, 2014, 34(4): 678-684. Zeng Xiangjun, Hu Jingying, Wang Yuanyuan, et al.Suppressing method of three-phase unbalanced overvoltage based on distribution networks flexible grounding control[J]. Proceedings of the CSEE, 2014, 34(4): 678-684. [18] 曾祥君, 黄明玮, 王文, 等. 配电网三相不平衡过电压有源抑制方法研究[J]. 电工技术学报, 2015, 30(9): 61-69. Zeng Xiangjun, Huang Mingwei, Wang Wen, et al.Research on active suppression method of three- phase unbalanced overvoltage for distribution networks[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 61-69. [19] 谢菁, 薛永端, 徐丙垠. 小电流接地系统不对称电压有源补偿控制方法[J]. 电力系统自动化, 2015, 39(5): 115-121. Xie Jing, Xue Yongduan, Xu Bingyin.An active compensation and control method of asymmetrical voltage in non-solidly grounded system[J]. Automation of Electric Power Systems, 2015, 39(5): 115-121. [20] 李晓波, 蒋峰景, 李康, 等. 采用改进有源补偿技术的中性点电压柔性控制方法[J]. 电力系统自动化, 2016, 40(24): 111-117, 124. Li Xiaobo, Jiang Fengjing, Li Kang, et al.Flexible control method of neutral point voltage using improved active compensation technology[J]. Automation of Electric Power Systems, 2016, 40(24): 111-117, 124. [21] 刘宝稳, 马宏忠. 零序电压产生机理及过渡电阻测量和选相方法[J]. 电网技术, 2015, 39(5): 1444-1449. Liu Baowen, Ma Hongzhong.Transition resistance measurement and fault phase selection under single- phase ground fault based on producing mechanism of zero-sequence voltage[J]. Power System Technology, 2015, 39(5): 1444-1449.