Modeling Method of Lithium-Ion Battery Considering Commonly Used Constant Current Conditions
Liu Wei1, Yang Geng2, Meng Deyue1, Li Lianbing3, Wang Bingzhang1
1. College of Mechanical and Electrical Engineering Cangzhou Normal University Cangzhou 061001 China; 2. Department of Automation Tsinghua University Beijing 100084 China; 3. School of Artificial Intelligence Hebei University of Technology Tianjin 300130 China
摘要 锂离子电池(LiB)的开路电压Uoc和内阻R是对LiB进行特性评估的重要参数。由于两者与LiB的荷电状态(SOC)、电流I及温度T呈非线性耦合关系,难以为工程应用建立一个参数(Uoc, R)相对于这些变量的准确的解析模型。该文提出一种工程性建模方法,旨在建立参数(Uoc, R)与LiB常用恒流工况范围内的变量(SOC, I, T)之间的映射关系。该方法首先在LiB常用工况范围内设计多个恒流工况实验以获取包含变量(SOC, I, T)典型信息的实验数据;其次采用一套数据处理方法解决LiB运行中SOC与T同时变化问题,并测算典型工作点{SOC, I, T}下的(Uoc, R);最后分析SOC、I、T到Uoc及R的映射关系,并构建开路电压模型Uoc(SOC, T)和内阻模型R(SOC, I, T)。与现有方法相比,该方法建立的模型涉及的工况全面、实验时间短、参数估计精度高,适用于LiB工程应用和特性研究。实验结果验证了该方法的有效性。
Abstract:The open circuit voltage Uoc and internal resistance R of Lithium-ion battery (LiB) are important parameters for the feature evaluation of LiB. Because Uoc and R are in non-linear and coupling relationships with the state of charge (SOC), current I and temperature T of a LiB, it is difficult to formulate an accurate mathematical model of the parameters (Uoc, R) relative to the variables for engineering applications. This paper proposes an engineering modeling method to establish a mapping relationship between the parameters (Uoc, R) and the variables (SOC, I, T) of LiB in the concerned application range. This method firstly designed multiple constant-current experiments within the range of LiB common operating conditions, and obtained experimental data containing typical information of variables (SOC, I, T). Secondly, a designed data process was used to solve the SOC simultaneous change problem with the temperature T during operation and calculate (Uoc, R) under the typical operating points {SOC, I, T}. Finally, the method gave the mapping of SOC, I, T to (Uoc, R), and then established the Uoc model and R model, respectively.compared with existed models, this model involves comprehensive working conditions, short experiment time and better parameter estimation accuracy, which is suitable for LiB engineering applications and characteristics research. The experimental results verify the effectiveness of the method.
刘伟, 杨耕, 孟德越, 李练兵, 王炳章. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报, 2021, 36(24): 5186-5200.
Liu Wei, Yang Geng, Meng Deyue, Li Lianbing, Wang Bingzhang. Modeling Method of Lithium-Ion Battery Considering Commonly Used Constant Current Conditions. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200.
[1] Ven A D, Bhattacharya J, Belak A A.Under- standing Li diffusion in Li-intercalation com- pounds[J]. Accounts of Chemical Research, 2013, 46(5): 1216-1225. [2] Yang Jufeng, Huang Wenxin, Xia Bing, et al.The improved open-circuit voltage characterization test using active polarization voltage reduction method[J]. Applied Energy, 2019, 237: 682-694. [3] Ovejas V J, Cuadras A.State of charge dependency of the overvoltage generated in commercial Li-ion cells[J]. Journal of Power Sources, 2019, 418: 176-185. [4] 石琼林, 郭东旭, 杨耕, 等. 具有磷酸铁锂电池负极特征的SOC区间的确定方法[J]. 电工技术学报, 2020, 35(19): 4097-4105. Shi Qionglin, Guo Dongxu, Yang Geng, et al.A method to determine characteristic region of negative electrode with state of charge for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4097-4105. [5] 韩乔妮, 姜帆, 程泽. 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36(17): 3705-3720. Han Qiaoni, Jiang Fan, Cheng Ze.State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temper- ature[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3705-3720. [6] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Performance correlation and temperature appli- cability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electro- technical Society, 2020, 35(9): 2063-2073. [7] 刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163. Liu Xintian, He Yao, Zeng Guojian, et al.State- of-power estimation for Li-ion battery considering the effect of temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 155-163. [8] 王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(8): 1836-1847. Wang Shuai, Yin Zhongdong, Zheng Zhong, et al.Representation of influence factors for battery module consistency on discharge voltage curves[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1836-1847. [9] Chen Yingjie, Yang Geng, Liu Xu, et al.A time-efficient and accurate open circuit voltage estimation method for lithium-ion batteries[J]. Energies, 2019, 12(9): 1803. [10] 何志超, 杨耕, 卢兰光, 等. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 532-537. He Zhichao, Yang Geng, Lu Languang, et al.Battery DC internal resistance test method based on the constant current external characteristics and SOC[J]. Journal of Tsinghua University (Science & Techno- logy), 2015, 55(5): 532-537. [11] 刘伟, 吴海桑, 何志超, 等. 一种均衡考虑锂电池内部能量损耗和充电速度的多段恒流充电方法[J]. 电工技术学报, 2017, 32(9): 112-120. Liu Wei, Wu Haisang, He Zhichao, et al.A multi- stage current charging method for Li-ion battery considering balance of internal consumption and charging speed[J]. Transactions of China Electro- technical Society, 2017, 32(9): 112-120. [12] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988. Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988. [13] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electro- technical Society, 2021, 36(10): 2178-2189. [14] He Zhichao, Yang Geng, Lu Languang.A parameter identification method for dynamics of lithium iron phosphate batteries based on step-change current curves and constant current curves[J]. Energies, 2016, 9(6): 444. [15] Bard A J, Faulkner L R.Electrochemical methods: fundamentals and applications[M]. New York: Wiley, 1980. [16] Farmann A, Sauer D U.A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries[J]. Journal of Power Sources, 2017, 347: 1-13. [17] Xing Yinjiao, He Wei, Pecht M, et al.State of charge estimation of lithium-ion batteries using the open- circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106-115. [18] Zheng Fangdan, Xing Yinjiao, Jiang Jiuchun, et al.Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183: 513-525. [19] 何志超, 杨耕, 卢兰光, 等. 一种动力电池动态特性建模[J]. 电工技术学报, 2016, 31(11): 194-203. He Zhichao, Yang Geng, Lu Languang, et al.A modeling method for power battery dynamics[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 194-203. [20] 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206. Pan Haihong, Zhang Mo, Wang Huimin, et al.Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206. [21] Waag W, Käbitz S, Sauer D U.Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102: 885-897. [22] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electro- technical Society, 2019, 34(18): 3937-3948. [23] 陈英杰, 杨耕, 刘旭. 恒流环境下锂离子电池热参数估计[J]. 电机与控制学报, 2019, 23(6): 1-9. Chen Yingjie, Yang Geng, Liu Xu.Thermal para- meters estimation of lithium-ion batteries under constant current conditions[J]. Electric Machines & Control, 2019, 23(6): 1-9. [24] Pattipati B, Balasingam B, Avvari G V, et al.Open circuit voltage characterization of lithium-ion batteries[J]. Journal of Power Sources, 2014, 269: 317-333. [25] Bernardi D, Pawlikowski E, Newman J.A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1984, 132(1): 5-12. [26] Hariharan K S.A coupled nonlinear equivalent circuit-thermal model for lithium ion cells[J]. Journal of Power Sources, 2013, 227: 171-176.