Flexible Uninterrupted Phase-Separation Passing System and Its Control Strategy for Electrified Railway Trains
Huang Yi1, Hu Haitao1, Wang Yiyun1, Ge Yinbo1, Gu Yuhan2
1. College of Electrical Engineering Southwest Jiaotong University Chengdu 611756 China; 2. Taiyuan China Railway Taiyuan Group Co. Ltd Taiyuan 030013 China
Abstract:Existing flexible phase-separation passing technologies for electrified railways face problems including large capacity requirements for converters and arcing caused by the separation with current between pantograph and contact wire. Thus, this paper proposed a more practical flexible uninterrupted phase-separation passing system and its control strategy. The proposed system connects the power phases on both sides of the phase-separation through a back-to-back converter. The single-phase inverter is drawn from the DC link of the back-to-back converter and connected with a phase-shifting transformer in series to maintain the voltage on the neutral wire. The connected phase-shifting transformer can effectively reduce the capacity of converters. With the goal of passing the phase-separation without power interruption, overvoltage and arcing, the working principle of the proposed system is analyzed in detail, and a control strategy with flexible voltage transition and power adjustment ability is proposed. Next, the effectiveness of the proposed system and control strategy is verified by the Matlab/Simulink-based simulation and the RT-Lab-based hardware in the loop experiment. Finally, the required capacity of the converters in the proposed system is analyzed, according to the practical operation scenarios of electric railways. Based on the analyzed results, some application suggestions of the proposed system are advised.
黄毅, 胡海涛, 王翼云, 葛银波, 谷禹涵. 电气化铁路列车柔性不断电过分相系统及其控制策略[J]. 电工技术学报, 2021, 36(23): 4959-4969.
Huang Yi, Hu Haitao, Wang Yiyun, Ge Yinbo, Gu Yuhan. Flexible Uninterrupted Phase-Separation Passing System and Its Control Strategy for Electrified Railway Trains. Transactions of China Electrotechnical Society, 2021, 36(23): 4959-4969.
[1] 李官军, 冯晓云, 王利军, 等. 高速动车组自动过分相控制策略研究与仿真[J]. 电工技术学报, 2007, 22(7): 181-185. Li Guanjun, Feng Xiaoyun, Wang Lijun, et al.Research and simulation on aoto-passing phase separation control strategy of high-speed EMU[J]. Transactions of China Electrotechnical Society, 2007, 22(7): 181-185. [2] 陈启迪. 基于牵引负荷实测数据的高铁牵引供电系统改造方案研究[D]. 成都: 西南交通大学, 2018. [3] 宫衍圣. 电力机车过关节式电分相过电压研究[J]. 铁道学报, 2008, 30(4): 103-107. Gong Yansheng.Research of over-voltages of electric locomotive passing the articulated phase insulator[J]. Journal of the China Railway Society, 2008, 30(4): 103-107. [4] 姜晓锋, 何正友, 胡海涛, 等. 高速铁路过分相电磁暂态过程分析[J]. 铁道学报, 2013, 35(12): 30-36. Jiang Xiaofeng, He Zhengyou, Hu Haitao, et al.Analusis on electomagnetic transient process of electric multiple unit passing netural section devices[J]. Journal of the China Railway Society, 2013, 35(12): 30-36. [5] 胡家喜, 周方圆. 电气化铁路列车过分相技术现状及发展[J]. 机车电传动, 2019(3): 1-5. Hu Jiaxi, Zhou Fangyuan.Status and development of neutral section passing technology for electrified railway trains[J]. Electric Drive for Locomotives, 2019(3): 1-5. [6] 李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报, 2010, 32(4): 119-124. Li Qunzhan.On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. [7] 王辉, 李群湛, 李晋, 等. 基于YNd变压器与静止无功发生器的电气化铁路同相供电综合补偿方案[J]. 电工技术学报, 2020, 35(17): 3739-3749. Wang Hui, Li Qunzhan, Li Jin, et al.Comprehensive compensation schemes of cophase power supply of electrified railway based on YNd transformer and static var generator[J]. Transactions of China Elec- trotechnical Society, 2020, 35(17): 3739-3749. [8] 胡海涛, 孟玺, 杨孝伟, 等. 新型24kV柔性直流铁路牵引供电系统分层控制策略研究[J]. 中国电机工程学报, 2021, 41(10): 3373-3382, 3663. Hu Haitao, Meng Xi, Yang Xiaowei, et al.A hierarchical control strategy for the novel 24kV flexible direct current railway traction power system[J]. Proceedings of the CSEE, 2021, 41(10): 3373-3382, 3663. [9] Wang Shuo, Zhang Liyan, Yu Guanghui, et al.Hybrid phase-controlled circuit breaker with switch system used in the railway auto-passing neutral section with an electric load[J]. CSEE Journal of Power and Energy Systems, 2019, 5(4): 545-552. [10] 王小君, 毕成杰, 金程, 等. 电气化铁路不停电过分相电磁暂态及抑制措施研究[J]. 电工技术学报, 2021, 36(1): 191-202. Wang Xiaojun, Bi Chengjie, Jin Cheng, et al.Research on electromagnetic transient and supper- ssion measures for passing neutral section without power interruption of electrified railway[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(1): 191-202. [11] 冉旺, 李雄, 刘冰, 等. 地面自动过分相中开关切换的瞬态过程研究[J]. 电工技术学报, 2011, 26(11): 150-154, 167. Ran Wang, Li Xiong, Liu Bing.Research on transient process of ground's auto-passing neutral section at switching time[J]. Transactions of China Electro- technical Society, 2011, 26(11): 150-154, 167. [12] Zhang Zhi, Trillion Q. Zheng, Li Kai, et al.Smart electric neutral section executer embedded with automatic pantograph location technique based on voltage and current signals[J]. IEEE Transactions on Transportation Electrification, 2020, 6(3): 1355-1367. [13] 韩乐佳, 杨少兵, 吴命利. 动车组电子开关过分相电磁暂态研究[J]. 机车电传动, 2019(5): 1-5, 14. Han Lejia, Yang Shaobing, Wu Mingli.Research on electromagnetic transient of EMUs electronic switch passing neutral section[J]. Electric Drive for Loco- motives, 2019(5): 1-5, 14. [14] 田旭, 姜齐荣, 魏应冬. 电气化铁路无断电过分相方案研究[J]. 电力系统保护与控制, 2012, 40(21): 14-18. Tian Xu, Jiang Qirong, Wei Yingdong.Research on novel uninterruptible phase-separation passing sheme in electrified railways[J]. Power System Protection and Control, 2012, 40(21): 14-18. [15] 田旭, 姜齐荣, 魏应冬. 基于两相式模块化多电平变流器的电气化铁路不断电过分相装置拓扑研究[J]. 电网技术, 2015, 39(10): 2901-2906. Tian Xu, Jiang Qirong, Wei Yingdong.Two-phase modular multilevel converter topology study of railway uninterruptible phase-separation passing device[J]. Power System Technology, 2015, 39(10): 2901-2906. [16] 袁佳歆, 倪周, 肖非然, 等. 具备电压补偿功能的不停电过分相系统及控制方法[J]. 电工技术学报, 2021, 36(5): 1084-1095. Yuan Jiaxin, Ni Zhou, Xiao Feiran, et al.Study on the control method and the uninterrupted phase- separation passing system with voltage compensation function[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1084-1095. [17] 韩正庆, 沈睿, 周亚洲. 基于RTDS的柔性自动过分相系统建模与仿真[J]. 机车电传动, 2019(3): 6-11. Han Zhengqing, Shen Rui, Zhou Yazhou.Simulation of flexible automatic neutral section passing system based on RTDS[J]. Electric Drive for Locomotives, 2019(3): 6-11. [18] Tian Xu, Jiang Qirong, Wei Yingdong.Research on novel railway uninterruptible flexible connector with series-connected transformers and back-to-back con- verter[C]//2013 IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 2013: 111-116. [19] 王伟凡, 李子欣, 赵聪, 等. 一种非全容量不断电过分相装置控制策略研究[J]. 中国电机工程学报, 2019, 39(5): 1461-1470. Wang Weifan, Li Zixin, Zhao Cong, et al.Research on partial capacity phase-separation passing equipment control strategy[J]. Proceedings of the CSEE, 2019, 39(5): 1461-1470. [20] 李银生, 陈唐龙, 牛大鹏. 电力机车过分相电弧放电现象的研究与探讨[J]. 电气化铁道, 2008(3): 21-23. Li Yinsheng, Chen Tanglong, Niu Dapeng.Analysis on the arcing phenomena of the electrical locomotive passing the overlap-phase[J]. Electric Railway, 2008(3): 21-23. [21] 韩正庆, 陈晨旭, 沈睿, 等. 高速铁路电分相电弧运动发展规律研究[J]. 中国电机工程学报, 2020, 40(10): 3154-3163. Han Zhengqing, Chen Chenxu, Shen Rui, et al.Research on the development laws of articulated phase insulator arc movement in high-speed rail- way[J]. Proceedings of the CSEE, 2020, 40(10): 3154-3163. [22] 吴晓谦, 靳来生, 杨建, 等. 关节式分相烧伤机理分析及防治对策[J]. 铁道机车车辆, 2010, 30(2): 96-98. Wu Xiaoqian, Jin Laisheng, Yang Jian, et al.Mechanism analysis and countermeasures of burning loss of articulated phase[J]. Railway Locomotive& Car, 2010, 30(2): 96-98. [23] 高仕斌, 胡海涛. 高速铁路车网电气耦合理论[M]. 北京: 科学出版社, 2016. [24] Chen Junyu, Hu Haitao, Ge Yinbo, et al.An energy storage system for recycling regenerative braking energy in high-speed railway[J]. IEEE Transactions on Power Delivery, 2021, 36(1): 320-330. [25] 张茂松, 池帮秀, 李家旺, 等. 有源电力滤波器基于准比例谐振的电流协调控制策略研究[J]. 电网技术, 2019, 43(5): 1614-1623. Zhang Maosong, Chi Bangxiu, Li Jiawang, et al.Study on quasi-PR current coordinated control for active power filter[J]. Power System Technology, 2019, 43(5): 1614-1623.