Research on Magnetic Losses Characteristics of Ferromagnetic Materials Based on Improvement Loss Separation Model
Zhao Zhigang1,2, Xu Man1,2, Hu Xinjian1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300132 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300132 China
Abstract:In order to provide a reference for the optimal design of power transformers, a calculation model is proposed based on the classical Bertotti loss separation model for accurate prediction of ferromagnetic material losses over a wide range of frequencies and magnetic flux densities. The proposed model can not only consider the nonlinearity of ferromagnetic materials, but accurately simulate iron losses under harmonic excitation conditions. Firstly, based on the magnetic loss data measured under sinusoidal excitation, two-frequency method is used to calculate the hysteresis loss at low frequency and low magnetic density, and the hysteresis loss expression is solved. Then, according to the equivalent magnetic flux density variation, a dynamic loss factor is proposed to calculate the excess losses. Considering the nonlinearity when magnetic flux density is high, a nonlinear correction term is introduced to compensate the losses. Finally, according to the actual working conditions, the proposed model was used to calculate ferromagnetic material losses within the frequency range of 1 000Hz and under different harmonic excitation conditions, respectively. The results show that the calculated values are in good agreement with the experimental measured values, which verifies the validity of the model.
赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究[J]. 电工技术学报, 2021, 36(13): 2782-2790.
Zhao Zhigang, Xu Man, Hu Xinjian. Research on Magnetic Losses Characteristics of Ferromagnetic Materials Based on Improvement Loss Separation Model. Transactions of China Electrotechnical Society, 2021, 36(13): 2782-2790.
[1] 张明泽, 刘骥, 吕佳璐, 等. 换油周期对变压器油纸绝缘老化性能影响规律[J]. 电工技术学报, 2019, 34(22): 4827-4838. Zhang Mingze, Liu Ji, Lü Jialu, et al.Aging influence of oil replacement cycle in transformer oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4827-4838. [2] 井永腾, 王欢, 李岩. 三相油浸变压器新型磁路设计与性能分析[J]. 电机与控制学报, 2019, 23(3): 26-33. Jing Yongteng, Wang Huan, Li Yan.Magnetic circuit design and performance analysis for three-phase oil-immersed transformer[J]. Electric Machines and Control, 2019, 23(3): 26-33. [3] 杨景刚, 刘洋, 刘瑞煌, 等. 基于模块化多电平换流器的多端口谐振型电力电子变压器[J]. 电力系统自动化, 2020, 44(13): 123-151. Yang Jinggang, Liu Yang, Liu Ruihuang, et al.Multi- port resonant power electronic transformer based on modular multilevel converter[J]. Automation of Electric Power Systems, 2020, 44(13): 123-151. [4] 李宗博, 焦在滨, 何安阳. 基于等效磁化曲线智能识别的变压器保护原理[J]. 电工技术学报, 2020, 35(7): 1464-1475. Li Zongbo, Jiao Zaibin, He Anyang.Equivalent magnetization curve intelligent recognition based transformer protection[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1464-1475. [5] 李永建, 闫鑫笑, 张长庚, 等. 基于磁-热-流耦合模型的变压器损耗计算和热点预测[J]. 电工技术学报, 2020, 35(21): 4483-4491. Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al.Numerical prediction of losses and local overheating in transformer windings based on magnetic-thermal- fluid model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491. [6] 赵小军, 崔灿, 李琳, 等. 基于定点谐波平衡法的铁心磁滞与损耗特性分析[J]. 电工技术学报, 2014, 29(7): 10-18. Zhao Xiaojun, Cui Can, Li Lin, et al.Analysis of the hysteresis and loss characteristics in the laminated core by fixed-point harmonic-balanced method[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 10-18. [7] 赵志刚, 刘佳, 郭莹, 等. 非正弦励磁环境磁性材料改进损耗模型的研究[J]. 电工技术学报, 2019, 34(13): 2693-2699. Zhao Zhigang, Liu Jia, Guo Ying, et al.Investi- gation on the improved loss model of magnetic materials under non-sinusoidal excitation environ- ment[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2693-2699. [8] Zhao Xiaojun, Wang Jiawen, Liu Lanrong, et al.Calculation and validation of stray-field loss in mag- netic and non-magnetic components under harmonic magnetizations based on TEAM problem 21[J]. IET Electric Power Applications, 2020, 14(3): 367-374. [9] Novak G, Kokošar J, Bricelj M, et al.Improved model based on the modified Steinmetz equation for predicting the magnetic losses in non-oriented electrical steels that is valid for elevated temperatures and frequencies[J]. IEEE Transactions on Magnetics, 2017, 53(10): 1-5. [10] 刘刚, 孙立鹏, 王雪刚, 等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909-4918. Liu Gang, Sun Lipeng, Wang Xuegang, et al.Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909-4918. [11] 张宁, 李琳, 魏晓光. 非正弦激励下磁心损耗的计算方法及实验验证[J]. 电工技术学报, 2016, 31(17): 224-232. Zhang Ning, Li Lin, Wei Xiaoguang.Calculation method and experimental verification of core losses under non-sinusoidal excitation[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 224-232. [12] Tekgun B, Sozer Y, Tsukerman I, et al.Core loss estimation in electric machines with flux-controlled core loss tester[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1299-1308. [13] 戈宝军, 魏瑶, 韩继超, 等. 开关磁阻电机定子铁损分布的时步有限元分析[J]. 电机与控制学报, 2020, 24(7): 20-28. Ge Baojun, Wei Yao, Han Jichao, et al.Time-finite element analysis of stator iron loss distribution in switched reluctance motors[J]. Electric Machines and Control, 2020, 24(7): 20-28. [14] 张冬冬, 赵海森, 王义龙, 等. 用于电机损耗精细化分析的分段变系数铁耗计算模型[J]. 电工技术学报, 2016, 31(15): 16-24. Zhang Dongdong, Zhao Haisen, Wang Yilong, et al.A piecewise variable coefficient model for precise analysis on iron losses of electrical machines[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 16-24. [15] Yu Yanan, Liang Deliang, Liang Zhe, et al.Calcu- lation for stator loss of high-speed permanent magnet synchronous machine in torque-speed envelope and restraint approach for circulating current in windings[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(2): 211-219. [16] 李劲松, 杨庆新, 李永建, 等. 高频高磁密时叠置硅钢片的铁芯损耗计算式改进[J]. 高电压技术, 2016, 42(3): 994-1002. Li Jingsong, Yang Qingxin, Li Yongjian, et al.Improved calculation formula of core losses for laminated silicon steels at high frequency and high flux density[J]. High Voltage Engineering, 2016, 42(3): 994-1002. [17] 刘任, 李琳. 基于场分离技术与损耗统计理论的动态Energetic磁滞模型[J]. 中国电机工程学报, 2019, 39(21): 6412-6419. Liu Ren, Li Lin.A dynamic Energetic hysteresis model based on the field separation approach and statistical theory of losses[J]. Proceedings of the CESS, 2019, 39(21): 6412-6419. [18] 陈林. 电力电子变换器中磁性元件磁芯损耗的研究[D]. 武汉: 华中科技大学, 2012. [19] Ionel D M, Popescu M, Dellinger S J, et al.On the variation with flux and frequency of the core loss coefficients in electrical machines[J]. IEEE Transa- ctions on Industry Applications, 2006, 42(3): 658-667. [20] Eggers D, Steentjes S, Hameyer K.Advanced iron- loss estimation for nonlinear material behavior[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3021-3024. [21] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [22] Olivares-Galván J C, Escarela-Pérez R, Georgilakis P S, et al. Separation of no-load losses for distribution transformers using experimental methods: two frequ- encies and two temperatures[C]//7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, Agia Napa, 2010: 1-5. [23] Zhu Jianguo, Ramsden V S.Improved formulations for rotational core losses in rotating electrical machines[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2234-2242. [24] 曹诗侯. 铁磁材料非正弦激励下的损耗计算方法研究[D]. 杭州: 浙江大学, 2017.