Layout Optimization of Pre-Manufactured Hydrogen Energy Storage Power Station Based on Surrogate Method
Yang Nan1, Yuan Tiejiang1, Zhang Yu1, Zhang Long1,2
1. School of Electrical Engineering Dalian University of Technology Dalian 116024 China; 2. Electric Science Research Institute State Grid Xinjiang Electric Power Company Urumqi 830092 China
Abstract:In order to explore the heat dissipation layout of the pre-manufactured Hydrogen energy storage power station, this paper proposes a design method based on Surrogate algorithm. With the goal of maximizing power density, combined with COMSOL Multiphysical finite element simulation software and Surrogate algorithm, the structure of the proton exchange membrane fuel cell (PEMFC) is optimized, which clarifies the power density and thermal load range of the PEMFC. The best heat dissipation plan is selected from all possible heat dissipation structures and optimized for obtaining the maximum power in limited spaces under the restriction of working temperature. With the assist of Ansys CFX and surrogate optimization, the best layout structure is optimized and validated using statistic of an experimental Energy Storage Station manufactured by certain company. The application of this method can successfully reduce the calculation ability required by Finite element method and make the method applicable for any kinds of Finite element Software, which provide a solid design method for industrial application in multi-physics, variable metric design problem.
杨南, 袁铁江, 张昱, 张龙. 基于Surrogate优化建模方法的预装式氢储能电站结构布局优化[J]. 电工技术学报, 2021, 36(3): 473-485.
Yang Nan, Yuan Tiejiang, Zhang Yu, Zhang Long. Layout Optimization of Pre-Manufactured Hydrogen Energy Storage Power Station Based on Surrogate Method. Transactions of China Electrotechnical Society, 2021, 36(3): 473-485.
[1] Abbey C, Li W, Joos G.An online control algorithm for application of a hybrid ESS to a wind-diesel system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3896-3904. [2] Barton J P, Infield D G.Energy storage and its use with intermittent renewable energy[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 441-448. [3] 徐唐海, 鲁宗相, 乔颖, 等. 源荷储多类型灵活性资源协调的高比例可再生能源电源规划[J]. 全球能源互联网, 2019, 2(1): 27-34. Xu Tanghai, Lu Zongxiang, Qiao Ying, et al.High penetration of renewable energy power planning considering coordination of source-load-storage multi-type flexible resources[J]. Journal of Global Energy Interconnection, 2019, 2(1): 27-34. [4] 刘志谱, 李欣然, 刘小龙, 等. 考虑负荷重要性与源-荷互补性的负荷恢复策略[J]. 全球能源互联网, 2019, 2(5): 449-456. Liu Zhipu, Li Xinran, Liu Xiaolong, et al.Load recovery strategy considering importance and source-load complementarity[J]. Journal of Global Energy Interconnection, 2019, 2(5): 449-456. [5] 陈豪, 郭磊, 华呈新, 等. 船舶舱室置换通风系统的数值模拟和优化[J]. 船舶, 2019, 30(4): 1-6. Chen Hao, Guo Lei, Hua Chengxin, et al.Numerical simulation and optimization of displacement ventilation system for ship cabin[J]. Ship and Boat, 2019, 30(4): 1-6. [6] 刘亚姣, 杨小凤, 庄春龙, 等. 机械式冷藏集装箱内温湿度场的数值模拟及其试验研究[J]. 保鲜与加工, 2016, 16(1): 81-86. Liu Yajiao, Yang Xiaofeng, Zhuang Chunlong, et al.Numerical simulation and experiment of temperature and humidity field inside mechanical refrigerated containers[J]. Storage and Process, 2016, 16(1): 81-86. [7] 田津津, 王飒飒, 张哲, 等. 冷藏集装箱内部流场的动态数值模拟与验证[J]. 食品与机械, 2016, 32(4): 136-142. Tian Jinjin, Wang Sasa, Zhang Zhe, et al.Dynamic numerical simulation and experimental research on internal flow field of refrigerated container[J]. Odd and Machinery, 2016, 32(4): 136-142. [8] 阚安康, 王宁, 毛赏, 等. 船舶冷藏集装箱舱室内通风方式的数值模拟及实验研究[J]. 上海海事大学学报, 2019, 40(2): 88-94. Kan Ankang, Wang Ning, Mao Shang, et.al. Numerical simulation and experimental study on ventilation mode of reefer container cabins of ships[J]. Journal of Shanghai Maritime University, 2019, 40(2): 88-94. [9] 彭程, 路文梅, 唐勇, 等. 35kV直挂集装箱式STATCOM散热系统分析与计算[J]. 电力电容器与无功补偿, 2018, 39(6): 53-58. Peng Cheng, Lu Wenmei, Tang Yong, et al.Analysis and calculation on 35kV straight hang container STATCOM thermal dissipation system[J]. Power Capacitor& Reactive Power Compensation, 2018, 39(6): 53-58. [10] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin, et al.Losses calculation and heat dissipation analysis of high-power three-level converters[J]. Transaction of China Electrotechnical Society, 2009, 24(3): 159-163. [11] 刘刚. IGBT模块散热设计分析[J]. 通信电源技术, 2020, 37(4): 141-142. Liu Gang.Analysis of heat dissipation design of IGBT module[J]. Telecom Power Technology, 2020, 37(4): 141-142. [12] 李敏, 赵鸿飞, 闫广超, 等. 静止无功发生器的发热分析[J]. 低压电器, 2012, 2012(12): 53-56. Li Min, Zhao Hongfei, Yan Guangchao, et al.Heat analysis of static var generator[J]. Low Voltage Apparatus, 2012, 2012(12): 53-56. [13] 薄晓坤, 任涛, 罗仁俊, 等. 基于ICEPAK的SVG设备流体通风仿真分析[J]. 电力电容器与无功补偿, 2016, 37(2): 22-26. Bo Xiaokun, Ren Tao, Luo Renjun, et.al. Simulation analysis of fluid ventilation for SVG equipment based on ICEPAK[J]. Power Capacitor& Reactive Power Compensation, 2016, 37(2): 22-26. [14] 张研, 曹永娣. 用于储能系统锂电池pack热设计的仿真计算与实验研究[J]. 电源学报, 2019, 17(6): 193-198. Zhang Yan, Cao Yongdi.Simulation calculation and experimental study of thermal design for lithium battery pack used in energy storage system[J]. Journal of Power Supply, 2019, 17(6): 193-198. [15] Umit N T.Passive thermal management of a simulated battery pack at different climate conditions[J]. Applied Thermal Engineering, 2019, 158(2019): 1359-4311. [16] Alessandro P, Elena B, Maurizio G, et al.On the optimal mix between lead-acid battery and thermal storage tank for PV and heat pump systems in high performance buildings[J]. Energy Procedia, 2017, 140: 423-433. [17] Magnor D, Soltau N, Bragard M, et al.Analysis of the model dynamics for the battery and battery converter in a grid-connected 5kW photovoltaic system[C]// 25th European photovoltaic solar energy conference, 2010, DOI:10.4229/25thEUPVSEC2010-4CO.1.4. [18] Zhao Jiateng, Rao Zhonghao, Liu Chenzhen, et al.Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat Mass Transfer, 2016, 99: 252-260. [19] Schimpe M, Naumann M, Truong N, et al.Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis[J]. Applied Energy, 2018, 210(2018): 211-229. [20] 颜宁, 潘霄, 张明理, 等. 基于复合储能的多互联微电网日内调度研究[J]. 电工技术学报, 2018, 33(增刊2): 577-585. Yan Ning, Pan Xiao, Zhang Mingli, et al.Research on intr-day dispatch for multi-connected microgrids based on hybrid energy storage[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 577-585. [21] 李佳琪, 陈健, 张文, 等. 高渗透率光伏配电网中电池储能系统综合运行控制策略[J]. 电工技术学报, 2019, 34(2): 437-446. Li Jiaqi, Chen Jian, Zhang Wen, et al.Integrated control strategy for battery energy storage system in distribution network with high photovoltaic penetration[J]. Transaction of China Electrotechnical Society, 2019, 34(2): 437-446. [22] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Baihan, Fang Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transaction of China Electrotechnical Society, 2019, 34(15): 3231-3243. [23] 肖宇. 氢储能:支撑起智能电网和可再生能源发电规模化[J]. 中国战略新兴产业, 2016(1): 46-49. Xiao Yu.Hydrogen energy storage: foundation for scale renewable power generation and smart grid[J]. China Strategic Emerging Industry, 2016(1):46-49. [24] Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. [25] 叶威, 伍昊洋, 邹全程, 等. 氢储能:基于Sobol法的宁夏固海扬水灌区ET_0敏感性分析[J]. 中国农村水利水电, 2019(12): 25-29. Ye Wei, Wu Haoyang, Zou Quancheng, et al.Sensitivity analysis of ET-0 in Guhai Yangshui irrigation district of Ningxia based on Sobol method[J]. China Rural Water and Hydropower, 2019(12): 25-29.