A Method to Determine Characteristic Region of Negative Electrode with State of Charge for Lithium-Ion Battery
Shi Qionglin1, Guo Dongxu2, Yang Geng2, Zhu Guorong1, Kang Jianqiang3
1. School of Automation Wuhan University of Technology Wuhan 430070 China;
2. Department of Automation Tsinghua University Beijing 100084 China;
3. School of Automotive Engineering Wuhan University of Technology Wuhan 430070 China
There are a positive and a negative electrode in a commercial lithium ion batteries. The aging rates of the two electrodes are generally inconsistent. Take lithium iron phosphate batteries as an example, the negative electrode dominates the degradation in this battery. It is considerable to distinguish the characteristics of the negative electrode from the external characteristics of the battery, and then to find the relevant aging information from this characteristic curve to study the aging problem of lithium iron phosphate batteries without dismantling them. As first step of the work, It is necessary to determine the obvious characteristics’ SOC region of the curve which is called negative characteristic region in this paper. Based on the fractional-order model and the linear model of different State of charge (SOC) working point, this paper analyzes potential change of two electrodes under different SOC, and give a method to determine the negative characteristic region. Finally, the correlation between the region and the aging of the battery were analyzed. These results are verified by the three-electrode experiment, which indicates that this method has guiding significance for the on-line observation of the aging problem of commercial lithium iron phosphate battery.
石琼林, 郭东旭, 杨耕, 朱国荣, 康健强. 具有磷酸铁锂电池负极特征的SOC区间的确定方法[J]. 电工技术学报, 2020, 35(19): 4097-4105.
Shi Qionglin, Guo Dongxu, Yang Geng, Zhu Guorong, Kang Jianqiang. A Method to Determine Characteristic Region of Negative Electrode with State of Charge for Lithium-Ion Battery. Transactions of China Electrotechnical Society, 2020, 35(19): 4097-4105.
[1] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978.
Guo Yongfang, Huang Kai, Li Zhigang.Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978.
[2] 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426.
Gu Miao, Xia Chaoying, Tian Congying.Li-ion battery state of charge estimation based on comprehensive Kalman filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 419-426.
[3] 李晓宇, 徐佳宁, 胡泽徽, 等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16.
Li Xiaoyu, Xu Jianing, Hu Zehui, et al.The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16.
[4] 刘伟, 吴海桑, 何志超, 等. 一种均衡考虑锂电池内部能量损耗和充电速度的多段恒流充电方法[J]. 电工技术学报, 2017, 32(9): 112-120.
Liu Wei, Wu Haisang, He Zhichao, et al.A multistage current charging method for Li-ion battery considering balance of internal consumption and charging speed[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 112-120.
[5] 何志超. 锂离子动力电池的动态模型研究[D]. 北京: 清华大学, 2016.
[6] 何志超, 杨耕, 卢兰光, 等. 一种动力电池动态特性建模[J]. 电工技术学报, 2016, 31(11): 194-203.
He Zhichao, Yang Geng, Lu Languang, et al.A modeling method for power battery dynamics[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 194-203.
[7] Zhang Q, White R E.Calendar life study of Li-ion pouch cells[J]. Journal of Power Sources, 2007, 173(2): 990-997.
[8] Zhang Q, White R E.Calendar life study of Li-ion pouch cells: Part 2: simulation[J]. Journal of Power Sources, 2008, 179(2): 785-792.
[9] 陈英杰. 锂离子动力电池工程模型及其参数估计问题研究[D]: 北京: 清华大学, 2019.
[10] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988.
Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988.
[11] 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145.
Wei Zhinong, Yuan Kangkang, Cheng Lexiang, et al.Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145.
[12] 韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
[13] Han Xuebing, Ouyang Minggao, Lu Languang, et al.A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity loss estimation[J]. Journal of Power Sources, 2014, 268: 658-669.
[14] Aurbach D.Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[15] Pallavi V, Pascal M, Petr N.A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[16] Aurbach D, Zinigrad E, Cohen Y, et al.A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416.
[17] Guo Dongxu, Yang Geng, Feng Xuning.Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery[J]. Journal of Energy Storage, 2020, 30: 101404.
[18] Maheshwari A, Heck M, Santarelli M, et al.Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2018, 273: 235-348.
[19] 孙国强, 任佳琦, 成乐祥, 等. 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J].电力系统自动化, 2018, 42(23): 57-63.
Sun Guoqiang, Ren Jiaqi, Cheng Lexiang, et al.State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42(23): 57-63.
[20] 祖海鹏, 刘旭, 杨耕, 等. 锂离子电池静置下阶跃放电电流动态模型[J]. 电源学报, 2019, 17(2): 163-170.
[21] Liu Xu, Guo Dongxu, Chen Yingjie, et al.BP neural network model of lithium-ion phosphate battery based on step-discharge current response[C]// 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, 2018: 1-6.