Abstract:For half-wave length transmission line main protection, aiming at the problems of unflavored action speed, the limitations of pilot protection and the existing local measurement based main protection have been analyzed. On this basis, a new main protection principle of ultra-high-speed local measurement-based protection is proposed, combined with the principle of wave-speed difference based single-ended fault location and half-wavelength line fault propagation characteristic. A new criterion is proposed by recognizing the time difference between arrival of line modal and zero modal travelling wave and the fault location can be determined. Meanwhile, fault direction is determined by direction criterion. With these two criteria, fault within nearly full range of the line can be covered. Compared with the existing pilot main protection, the action speed is increased by 1~2 cycles. Numerical simulations verify the effectiveness and superiority of the proposed protection principle.
陈乐, 彭咏泉, 林湘宁, 李正天, 金能. 面向接地故障辨识的半波长线路测距式超高速就地主保护新原理研究[J]. 电工技术学报, 2019, 34(24): 5234-5243.
Chen Le, Peng Yongquan, Lin Xiangning, Li Zhengtian, Jin Neng. New Ultra High Speed Local Measurement-Based Protection Principle for Half-Wave Transmission Line Ground Fault Identification. Transactions of China Electrotechnical Society, 2019, 34(24): 5234-5243.
[1] 韩彬, 林集明, 班连庚, 等. 特高压半波长交流输电系统电磁暂态特性分析[J]. 电网技术, 2011, 35(9): 22-27. Han Bin, Lin Jiming, Ban Liangeng, et al.Analysis on electromagnetic transient characteristics of UHV half-wavelength AC transmission system[J]. Power System Technology, 2011, 35(9): 22-27. [2] 宋云亭, 周霄, 李碧辉, 等. 特高压半波长交流输电系统经济性与可靠性评估[J]. 电网技术, 2011, 35(9): 1-6. Song Yunting, Zhou Xiao, Li Bihui, et al.Economic analysis and reliability assessment of UHV half- wavelength AC transmission[J]. Power System Technology, 2011, 35(9): 1-6. [3] 秦晓辉, 张志强, 徐征雄, 等. 基于准稳态模型的特高压半波长交流输电系统稳态特性与暂态稳定研究[J]. 中国电机工程学报, 2011, 31(31): 66-76. Qin Xiaohui, Zhang Zhiqiang, Xu Zhengxiong, et al.Study on the steady state characteristic and transient stability of UHV AC half-wave-length transmission system based on quasi-steady model[J]. Proceedings of the CSEE, 2011, 31(31): 66-76. [4] 李肖, 杜丁香, 刘宇, 等. 半波长输电线路差动电流分布特征及差动保护原理适应性研究[J]. 中国电机工程学报, 2016, 36(24): 6802-6808, 6935. Li Xiao, Du Dingxiang, Liu Yu, et al.Analysis for differential current distribution and adaptability of differential protection of half-wavelength AC trans- mission line[J]. Proceedings of the CSEE, 2016, 36(24): 6802-6808, 6935. [5] 郭雅蓉, 周泽昕, 柳焕章, 等. 时差法计算半波长线路差动保护最优差动点[J]. 中国电机工程学报, 2016, 36(24): 6796-6801. Guo Yarong, Zhou Zexin, Liu Huanzhang, et al.Time difference method to calculate the optimal differential point of half-wavelength AC transmission line differential protection[J]. Proceedings of the CSEE, 2016, 36(24): 6796-6801. [6] 周泽昕, 柳焕章, 郭雅蓉, 等. 适用于半波长线路的假同步差动保护[J]. 中国电机工程学报, 2016, 36(24): 6780-6787. Zhou Zexin, Liu Huanzhang, Guo Yarong, et al.The false synchronization differential protection for half-wavelength transmission line[J]. Proceedings of the CSEE, 2016, 36(24): 6780-6787. [7] 肖仕武, 程艳杰, 王亚. 基于贝瑞隆模型的半波长交流输电线路电流差动保护原理[J]. 电网技术, 2011, 35(9): 46-50. Xiao Shiwu, Cheng Yanjie, Wang Ya.A bergeron model based current differential protection principle for UHV half-wavelength AC transmission line[J]. Power System Technology, 2011, 35(9): 46-50. [8] 李斌, 郭子煊, 姚斌, 等. 适用于半波长线路的贝瑞隆差动改进算法[J]. 电力系统自动化, 2017, 41(6): 80-85. Li Bin, Guo Zixuan, Yao Bin, et al.Bergeron model based current differential protection modified algorithm for half-wavelength transmission line[J]. Automation of Electric Power Systems, 2017, 41(6): 80-85. [9] 雷傲宇, 董新洲, 冯腾, 等. 半波长输电线路短路故障后的故障方向特性[J]. 电网技术, 2017, 41(12): 3832-3839. Lei Aoyu, Dong Xinzhou, Feng Teng, et al.Study of fault direction characteristic of half-wave-length AC transmission lines[J]. Power System Technology, 2017, 41(12): 3832-3839. [10] 汤兰西, 董新洲. 半波长交流输电线路行波差动电流特性的研究[J]. 中国电机工程学报, 2017, 37(8): 2261-2270. Tang Lanxi, Dong Xinzhou.Study on the characteri- stic of travelling wave differential current on half- wave-length AC transmission lines[J]. Proceedings of the CSEE, 2017, 37(8): 2261-2270. [11] 邓丰, 李欣然, 曾祥君. 基于全波形信息的混联线路单端行波定位方法[J]. 电工技术学报, 2018, 33(15): 3471-3485. Deng Feng, Li Xinran, Zeng Xiangjun.Single-ended traveling-wave-based fault location algorithm for hybrid transmission line based on the full- waveform[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3471-3485. [12] 陈仕龙, 张杰, 刘红锐, 等. 特高压直流输电线路单端电流方向暂态保护[J]. 电工技术学报, 2016, 31(2): 171-177. Chen Shilong, Zhang Jie, Liu Hongrui, et al.A single-ended current direction transient protection of UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 171-177. [13] 刘建辉. 基于分布参数的半波长交流输电线路保护原理研究[D]. 北京: 华北电力大学, 2013. [14] 周泽昕, 王兴国, 柳焕章, 等. 特高压交流半波长输电线路保护体系[J]. 电网技术, 2017, 41(10): 3174-3179. Zhou Zexin, Wang Xingguo, Liu Huanzhang, et al.UHV AC half-wavelength transmission line pro- tection scheme[J]. Power System Technology, 2017, 41(10): 3174-3179. [15] 贾惠彬, 苏思岚, 李明舒, 等. 考虑线路参数频变特性的小波域行波信号奇异性增强方法[J]. 电工技术学报, 2017, 32(15): 153-160. Jia Huibin, Su Silan, Li Mingshu, et al.A singularity enhancement method in wavelet domain for traveling wave with considering frequency characteristics of line parameter[J]. Transactions of China Electro- technical Society, 2017, 32(15): 153-160. [16] Dommel H W.Electromagnetic transients program reference manual[Z]. Bonneville Power Administration, 1986. [17] 吴青华, 张东江. 形态滤波技术及其在继电保护中的应用[J]. 电力系统自动化, 2003(7): 45-49. Wu Qinghua, Zhang Dongjiang.Morphological filtering technology and application in relay protection[J]. Automation of Electric Power Systems, 2003(7): 45-49. [18] 林湘宁, 刘沛, 刘世明, 等. 电力系统超高速保护的形态学-小波综合滤波算法[J]. 中国电机工程学报, 2002, 21(9): 19-24. Lin Xiangning, Liu Pei, Liu Shiming, et al.A novel integrated morphology-wavelet filter algorithm used for ultra-high speed protection of power systems[J]. Proceedings of the CSEE, 2002, 21(9): 19-24. [19] Dommel H W, Michels J M.High speed relaying using traveling wave transient analysis[J]. IEEE Transactions on Power Apparatus & Systems, 1978, 97(4): 1-7. [20] Mansour M M, Swift G W.A multi-microprocessor based travelling wave relay-theory and realization[J]. IEEE Transactions on Power Delivery, 1986, 1(1): 272-279.