电工技术学报  2019, Vol. 34 Issue (zk1): 378-387    DOI: 10.19595/j.cnki.1000-6753.tces.L80546
储能系统及优化配置 |
基于信息反馈粒子群的高精度锂离子电池模型参数辨识
黄凯1, 郭永芳2, 李志刚1
1. 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学) 天津 300130;
2. 河北工业大学人工智能与数据科学学院 天津 300130
High Precision Parameter Identification of Lithium-Ion Battery Model Based on Feedback Particle Swarm Optimization Algorithm
Huang Kai1, Guo Yongfang2, Li Zhigang1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China;
2. School of Artificial Intelligence Hebei University of Technology Tianjin 300130 China
全文: PDF (22853 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 锂离子电池模型参数精度是影响模型仿真电池静态和动态特性的一个重要因素。近年来,粒子群优化(PSO)算法常被应用于模型参数辨识中。然而PSO算法及其改进算法在迭代过程中存在此问题,即粒子位置的更新并未引起其局部最优位置以及种群全局最优位置的更新,从而导致优化算法无法获得更优结果。针对此问题,提出一种基于信息反馈的粒子群(FPSO)算法,其能够根据粒子位置更新的反馈信息重新调整粒子位置,旨在促进粒子局部最优位置和全局最优位置持续更新以提高寻优精度。在利用常用基准函数对本文FPSO算法进行性能验证后,将其应用于锂离子电池模型参数辨识,实验结果表明,相比基于线性PSO、自适应权重PSO以及最小二乘法的模型参数辨识结果,本文提出的FPSO算法能够提高模型精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄凯
郭永芳
李志刚
关键词 锂离子电池等效电路模型模型参数辨识信息反馈PSO    
Abstract:The parameter precision of lithium-ion battery model is an important factor affecting the model to simulate the static and dynamic characteristics of the battery. In recent years, particle swarm optimization (PSO) is often applied to identify the model parameter. However, PSO and its improved algorithm could encounter such problem that, the position of a particle is updating while the local optimal position of the particle and the global optimal position of all the particles stop updating, resulting in the optimization algorithm can’t obtain more precision results. In view of such problem, this paper presents an improved feedback PSO (FPSO), the position of the particle can be adjusted according to the feedback information of the particle to continue to update the local position of the particle to improve the optimization precision. Typical benchmark functions are used to validate the performance of FPSO. On the other hand, the FPSO of the paper is applied to identify the parameter of the lithium-ion battery model, and the experimental results show that, comparing with the models based on Linear PSO, Adaptive weight PSO, and Least Square (LS) parameter identification, the model using FPSO of the paper can achieve high precision.
Key wordsLithium-ion battery    equivalent circuit model (ECM)    model parameter identification    feedback particle swarm optimization (FPSO)   
收稿日期: 2018-07-06      出版日期: 2019-07-29
PACS: TM912  
基金资助:中国博士后科学基金项目(2017M612606)和国家重点研发项目(2017YFB0903205)资助
通讯作者: 夏云峰,男,1982年生,博士,高级工程师,研究方向为输变电设备运行与检修、高电压与绝缘技术。E-mail:xyf0725@163.com   
作者简介: 黄凯,男,1980年生,博士,讲师,研究方向为储能与动力电池组测试与建模、电池组性能状态预测与可靠性估计。E-mail:huangkai@hebut.edu.cn
引用本文:   
黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(zk1): 378-387. Huang Kai, Guo Yongfang, Li Zhigang. High Precision Parameter Identification of Lithium-Ion Battery Model Based on Feedback Particle Swarm Optimization Algorithm. Transactions of China Electrotechnical Society, 2019, 34(zk1): 378-387.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.L80546          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/Izk1/378