Abstract:In this paper, we investigated an optimized transmission line method (TLM) using an equivalent circuit model and relaxation method to calculate the nonlinear magnetostatic field in an axisymmetrical actuator with permanent magnet. A Newton-Raphson (N-R) preconditioner, parallel reflection phase in TLM and a CPU-based parallel triangular solver using level scheduler are exploited to accelerate the computation in each nonlinear iteration step. Compared with conventional N-R iteration, the optimized TLM algorithm greatly reduces the computation time more than 10 times. In addition, the magnetic field distribution and the electromagnetic force of the studied actuator are calculated by the proposed method in this paper, and the simulation results are validated through experiments.
彭飞, 杨文英, 翟国富. 基于优化的传输线法的并行静磁场有限元方法[J]. 电工技术学报, 2019, 34(13): 2716-2725.
Peng Fei, Yang Wenying, Zhai Guofu. An Optimized Parallel Transmission Line Iteration for Parallel Finite Element Analysis in Magnetostatic Field. Transactions of China Electrotechnical Society, 2019, 34(13): 2716-2725.
[1] 戈宝军, 殷继伟, 陶大军, 等. 基于励磁与调速控制的单机无穷大系统场-路-网时步有限元建模[J]. 电工技术学报, 2017, 32(3): 139-148. Ge Baojun, Yin Jiwei, Tao Dajun, et al.Modeling of field-circuit-network coupled time-stepping finite element for one machine infinite bus system based on excitation and speed control[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 139-148. [2] 金亮, 邱运涛, 杨庆新, 等. 基于云计算的电磁问题并行计算方法[J]. 电工技术学报, 2016, 31(22): 5-11. Jin Liang, Qiu Yuntao, Yang Qingxin, et al.A parallel computing method to electromagnetic problems based on cloud computing[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 5-11. [3] 杨文英, 郭久威, 王茹, 等. 继电器电磁机构电磁-热耦合模型建立与计算方法[J].电工技术学报, 2017, 32(13): 169-177. Yang Wenying, Guo Jiuwei, Wang Ru, et al.Establishing and calculating methods of electromagnetic-thermal coupling model of relay’s electromagnetic mechanism[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 169-177. [4] 何晓燕, 许志红. 交流接触器虚拟样机设计技术[J]. 电工技术学报, 2016, 31(14): 148-155. He Xiaoyan, Xu Zhihong.Virtual prototyping technology of AC contactor[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 148-155. [5] 李龙女, 李岩, 刘晓明. 高压自耦变压器肺叶磁屏蔽特性的数值计算与分析[J]. 电工技术学报, 2017, 32(22): 134-143. Li Longnü, Li Yan, Liu Xiaoming.Numerical calculation and analysis of lobe-type magnetic shielding in high voltage auto-transformer[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 134-143. [6] Giannacopoulos D D, Ren D Q.Analysis and design of parallel 3-D mesh refinement dynamic load balancing algorithms for finite element electromagnetics with tetrahedra[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1235-1238. [7] Ren D Q, Giannacopoulos D D.Parallel mesh refinement for 3-D finite element electromagnetics with tetrahedra: Strategies for optimizing system communication[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1251-1254. [8] Ren D Q, Park T, Mirican B, et al.A methodology for performance modeling and simulation validation of parallel 3-D finite element mesh refinement with tetrahedra[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1406-1409. [9] Markall G R, Slemmer A, Ham D A, et al.Finite element assembly strategies on multi-core and many-core architectures[J]. International Journal for Numerical Methods in Fluids, 2013, 71(1): 80-97. [10] Cecka C, Lew A J, Darve E.Assembly of finite element methods on graphics processors[J]. International Journal for Numerical Methods in Engineering, 2011, 85(5): 640-669. [11] Ljungkvistk K.Finite element computations on multicore and graphics processors[D]. Sweden: University of Uppsala, 2017. [12] Kiss I, Gyimothy S, Badics Z, et al.Parallel realization of the element-by-element FEM technique by CUDA[J]. IEEE Transactions on Magnetics, 2012, 48(2): 507-510. [13] Magele C A, Preis K, Renhart W.Some improvements in nonlinear 3D magnetostatics[J]. IEEE Transactions on Magnetics, 1990, 26(2): 375-378. [14] Nakatat T, Takahashin N, Fujiwarak K, et al.Improvements of convergence characteristics of Newton-Raphson method for nonlinear magnetic field analysis[J]. IEEE Transactions on Magnetics, 1992, 28(2): 1048-1051. [15] Hoole S R H, Mahinthakumar G. Parallelism in interactive operations in finite-element simulation[J]. IEEE Transactions on Magnetics, 1990, 26(4): 1252-1255. [16] Rischmuller V, Haas M, Kurz S, et al.3D transient analysis of electromechanical devices using parallel BEM coupled to FEM[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1360-1363. [17] Boehmer S, Cramer T, Hafner M, et al.Numerical simulation of electrical machines by means of a hybrid parallelisation using MPI and OpenMP for finite-element method[J]. IET Science, Measurement Technology, 2012, 6(5): 339-343. [18] Amestoy P, Buttari A, Joslin G, et al.Shared memory parallelism and low-rank approximation techniques applied to direct solvers in FEM simulation[J]. IEEE Transactions on Magnetics, 2014, 50(2): 517-520. [19] Dommel H W. Digital computer solution of electromagnetic transients in single-and multiphase networks[J]. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(4): 388-399. [20] Johns P B, O’Brien M. Use of the transmission-line modelling (t.l.m.) method to solve non-linear lumped networks[J]. Radio and Electronic Engineer, 1980, 50(1.2): 59-70. [21] Hui S Y R, Christopoulos C. Numerical simulation of power circuits using transmission-line modelling[J]. IEE Proceedings A-Physical Science, Measurement and Instrumentation, Management and Education, 1990, 137(6): 379-384. [22] Lobry J, Trecat J, Broche C.The transmission line modeling (TLM) method as a new iterative technique in nonlinear 2-D magnetostatics[J]. IEEE Transactions on Magnetics, 1996, 32(2): 559-566. [23] Knight A M.Time-stepped eddy-current analysis of induction machines with transmission line modeling and domain decomposition[J]. IEEE Transactions on Magnetics, 2003, 39(4): 2030-2035. [24] Deblecker O, Lobry J, Broche C.Use of transmission-line modelling method in FEM for solution of nonlinear eddy-current problems[J]. IEE Proceedings-Science, Measurement and Technology, 1998, 145(1): 31-38. [25] Knight A M.Efficient parallel solution of time-steppedmultislice eddy-current induction motor models[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1282-1285. [26] Asghari B, Dinavahi V.Novel transmission line modeling method for nonlinear permeance network based simulation of induction machines[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2100-2108. [27] Asghari B, Dinavahi V.Real-time nonlinear transient simulation based on optimized transmission line modeling[J]. IEEE Transactions on Power Systems, 2011, 26(2): 699-709. [28] Yang Wenjing, Peng Fei, Dinavahi V.Nonlinear axisymmetric magnetostatic analysis for electromagnetic device using TLM-based finite-element method[J]. IEEE Transactions on Magnetics, 2017, 53(4): 1-9. [29] Jin Jianming.The finite element method in electromagnetics[M]. 2nd ed. John Wiley & Sons, Inc., 2002: 119-121. [30] Polycarpou A C.Introduction to the finite element method in electromagnetics[J]. Synthesis Lectures on Computational Electromagnetics, 2005, 1(1): 126. [31] Higham N J.Stability of parallel triangular system solvers[J]. SIAM Journal on Scientific Computing, 1995, 16(2): 400-413. [32] Gonzalez P, Cabaleiro J C, Pena T F, et al.On parallel solvers for sparse triangular systems[J]. Journal of Systems Architecture, 2000, 46(8): 675-685. [33] Hogg J D.A fast dense triangular solve in CUDA[J]. SIAM Journal on Scientific Computing, 2013, 35(3): C303-C322. [34] Wicky T, Solomonik E, Hoefler T.Communication-avoiding parallel algorithms for solving triangular systems of linear equations[C]//2017 IEEE InternationalParallel and Distributed Processing Symposium (IPDPS), Orlando, FL, 2017: 678-687. [35] Benhama A, Williamson A C, Reece A B J. Force and torque computation from 2-D and 3-D finite element field solutions[J]. IEE Proceedings-Electric Power Applications, 1999, 146(1): 25-31. [36] Coulomb J.A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness[J]. IEEE Transactions on Magnetics, 1983, 19(6): 2514-2519. [37] Coulomb J, Meunier G.Finite element implementation of virtual work principle for magnetic or electric force and torque computation[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1894-1896. [38] Benhama A, Williamson A C, Reece A B J. Virtual work approach to the computation of magnetic force distribution from finite element field solutions[J]. IEE Proceedings-Electric Power Applications, 2000, 147(6): 437-442. [39] Demmel J W, Gilbert J T, Li S.SuperLU users’ guide: LBNL-44289[R]. Lawrence Berkeley National Laboratory, 1999.