Parameter Extraction for Jiles-Atherton Hysteresis Model Based on the Hybrid Technique of Stochastic and Deterministic Optimization Algorithm
Liu Ren1, Li Lin1, Wang Yaqi1, Han Yu2, Liu Yang2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power University Beijing 102206 China; 2. Global Energy Interconnection Research Institute Beijing 102211 China
Abstract:The primary task of using J-A hysteresis model to simulate the hysteresis phenomenons of ferromagnetic materials is the model parameters' efficient identification. Owing to the slow convergence rate and low accuracy level of existing parameter extraction methods, a hybrid technique that couples simulated annealing (SA) with Levenberg-Marquardt (L-M) is proposed. This algorithm combines the merits of strong global search ability in SA and fast local convergence speed in L-M. In the initial iteration process, SA is used to quickly lock the optimized region. Then according to the introduced switching criterion, SA stops working, and its current solution is transferred to the L-M. Aiming at the problem of ill-conditioned matrix that appears in the process of parameter extraction when using traditional L-M, the sensitivity function matrix is normalized so as to obtain the normalized L-M, which is suitable for the rapid parameter identification of J-A model parameters. After receiving the solution provided by SA, the normalized L-M takes this values as its initial parameters for local search. The simulation and experimental results show that the proposed hybrid algorithm has the advantages of fast convergence and high accuracy at the same time.
刘任, 李琳, 王亚琦, 韩钰, 刘洋. 基于随机性与确定性混合优化算法的Jiles-Atherton磁滞模型参数提取[J]. 电工技术学报, 2019, 34(11): 2260-2268.
Liu Ren, Li Lin, Wang Yaqi, Han Yu, Liu Yang. Parameter Extraction for Jiles-Atherton Hysteresis Model Based on the Hybrid Technique of Stochastic and Deterministic Optimization Algorithm. Transactions of China Electrotechnical Society, 2019, 34(11): 2260-2268.
[1] 陈彬, 李琳, 赵志斌. 双向全桥DC-DC变换器中大容量高频变压器绕组与磁心损耗计算[J]. 电工技术学报, 2017, 32(22): 123-133. Chen Bin, Li Lin, Zhao Zhibin.Calculation of high-power high-frequency transformer's copper loss and magnetic core loss in dual-active-bridge DC-DC converter[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 123-133. [2] 陈彬, 李琳, 赵志斌. 典型非正弦电压波激励下高频磁心损耗[J]. 电工技术学报, 2018, 33(8): 1696-1704. Chen Bin, Li Lin, Zhao Zhibin.Magnetic core losses under high-frequency typical non-sinusoidal voltage magnetization[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1696-1704. [3] De La Barrière O, Ragusa C, Appino C, et al. Prediction of energy losses in soft magnetic materials under arbitrary induction waveforms and DC bias[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2522-2529. [4] Beatrice C, Appino C, De La Barrière O, et al. Broadband magnetic losses in Fe-Si and Fe-Co laminations[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-4. [5] Hamada S, Louai F Z, Nait-Said N, et al.Dynamic hysteresis modeling including skin effect using diffusion equation model[J]. Journal of Magnetism & Magnetic Materials, 2016, 410: 137-143. [6] Li Huiqi, Li Qingfeng, Xu Xiaobang, et al.A modified method for Jiles-Atherton hysteresis model and its application in numerical simulation of devices involving magnetic materials[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1094-1097. [7] Jiles D C, Thoelke J B, Devine M K.Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1992, 28(1): 27-35. [8] Vaseghi B, Mathekga D, Rahman S A, et al.Parameter optimization and study of inverse J-A hysteresis model[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1637-1640. [9] Jiles D C, Atherton D L.Theory of ferromagnetic hysteresis[J]. Journal of Applied Physics, 1984, 55(6): 2115-2120. [10] Chwastek K, Szczygłowski J.Identification of a hysteresis model parameters with genetic algorithms[J]. Mathematics and Computers in Simulation, 2006, 71(3): 206-211. [11] Marion R, Scorretti R, Siauve N, et al.Identification of Jiles-Atherton model parameters using particle swarm optimization[J]. IEEE Transactions on Magnetics, 2008, 44(6): 894-897. [12] 耿超, 王丰华, 苏磊, 等. 基于人工鱼群与蛙跳混合算法的变压器Jiles-Atherton模型参数辨识[J]. 中国电机工程学报, 2015, 35(18): 4799-4807. Geng Chao, Wang Fenghua, Su Lei, et al.Parameter identification of Jiles-Atherton model for transformer based on hybrid artificial fish swarm and shuffled frog leaping algorithm[J]. Proceedings of the CSEE, 2015, 35(18): 4799-4807. [13] 王洋, 刘志珍. 基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定[J]. 电工技术学报, 2017, 32(4): 154-161. Wang Yang, Liu Zhizhen.Determination of Jiles Atherton core hysteresis model parameters based on fuzzy-shuffled frog leaping algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 154-161. [14] Hernandez E D M, Muranaka C S, Cardoso J R. Identification of the Jiles-Atherton model parameters using random and deterministic searches[J]. Physica B Condensed Matter, 2000, 275(1-3): 212-215. [15] Vasconcelos J A, Saldanha R R, Krahenbuhl L, et al.Genetic algorithm coupled with a deterministic method for optimization in electromagnetics[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1860-1863. [16] Nocedal J, Wright S J.Numerical optimization[M]. New York: Springer, 2006. [17] Jiles D C.Frequency dependence of hysteresis curves in conducting magnetic materials[J]. Journal of Applied Physics, 1994, 76(10): 5849-5855. [18] Chwastek K.Modelling of dynamic hysteresis loops using the Jiles-Atherton approach[J]. Mathematical & Computer Modelling of Dynamical Systems, 2009, 15(1): 95-105. [19] 袁澎, 艾芊, 赵媛媛. 基于改进的遗传-模拟退火算法和误差度分析原理的PMU多目标优化配置[J]. 中国电机工程学报, 2014, 34(13): 2178-2187. Yuan Peng, Ai Qian, Zhao Yuanyuan.Research on multi-objective optimal PMU placement based on error analysis theory and improved GASA[J]. Proceedings of the CSEE, 2014, 34(13): 2178-2187. [20] Drago G, Manella A, Nervi M, et al.A combined strategy for optimization in non linear magnetic problems using simulated annealing and search techniques[J]. IEEE Transactions on Magnetics, 1992, 28(2): 1541-1544. [21] Vasin V V, Perestoronina G Y.The Levenberg-Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem[J]. Proceedings of the Steklov Institute of Mathematics, 2013 , 280(1): 174-182. [22] Fan Jinyan, Pan Jianyu.A note on the Levenberg- Marquardt parameter[J]. Applied Mathematics and Computation, 2009, 207(2): 351-359. [23] Marquardt D W.An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. [24] 严正, 范翔, 赵文恺, 等. 自适应Levenberg-Marquardt方法提高潮流计算收敛性[J]. 中国电机工程学报, 2015, 4(20): 1909-1918. Yan Zheng, Fan Xiang, Zhao Wenkai, et al.Improving the convergence of power flow calculation by a self-adaptive Levenberg-Marquardt method[J]. Proceedings of the CSEE, 2015, 4(20): 1909-1918. [25] Trigeassou J C, Poinot T, Moreau S.A methodology for estimation of physical parameters[J]. Systems Analysis Modelling Simulation, 2003, 43(7): 925-943.