Abstract:Multi-sources have participated in the subsynchronous oscillation of renewable energy power system. Conventional approach for state space modeling of multi-sources system is difficult to be employed in the situations where wind power, photovoltaic and thermal power operate parallelly. This paper presents a graphical modeling method, based on a graphical model library containing basic units in the form of state space model. The proposed method can establish the state space according to complex system visually. In addition, it is more convenient for the source-to-grid interface processing. The study case of IEEE first benchmark model for subsynchrnous oscillation verified the proposed method. What’s more, a state space pertaining to the multi-sources system was modeled, where wind power bundled with thermal power transmitted through HVDC line. The influence of wind power on subsynchronous torsional modes belonging to thermal generator was studied. The advantages of graphical modeling method over conventional approach are strong independence, high flexibility, good visibility and strong extensibility.
[1] 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513- 2522. Liu Zhenya, Zhang Qiping, Dong Cun, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522. [2] 徐式蕴, 吴萍, 赵兵, 等. 提升风火打捆哈郑特高压直流风电消纳能力的安全稳定控制措施研究[J]. 电工技术学报, 2015, 30(13): 92-99. Xu Shiyun, Wu Ping, Zhao Bing, et al. Study on the security and stability control strategy enhancing the wind power consuming ability of the wind-thermal power combining Hazheng UHVDC system[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 92-99. [3] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [4] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. Gao Benfeng, Liu Jin, Li Ren, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161. [5] 张剑, 肖湘宁, 高本锋, 等. 双馈风力发电机的次同步控制相互作用机理与特性研究[J]. 电工技术学报, 2013, 28(12): 142-149. Zhang Jian, Xiao Xiangning, Gao Benfeng, et al. Mechanism and characteristic study on sub- synchronous control interaction of a DFIG-based wind-power generator[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 142-149. [6] Mohammadpour H A, Santi E. Sub-synchronous resonance analysis in DFIG-based wind farms: Definitions and problem identification—Part I[C]// IEEE Energy Conversion Congress and Exposition, 2014: 812-819. [7] 陈耀君. 含双馈风电场系统的次同步振荡特性及抑制策略研究[D]. 重庆: 重庆大学, 2014. [8] 朱鑫要. 大电源外送系统次同步振荡分析方法及特性研究[D]. 武汉: 华中科技大学, 2014. [9] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366- 2372. Xie Xiaorong, Liu Huakun, He Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full- converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372. [10] Kundur P. Power system sability and control[M]. New York: McGraw Hill, 1994. [11] 倪以信, 陈寿孙, 张宝霖. 动态电力系统理论和分析[M]. 北京: 清华大学出版社, 2002. [12] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [13] 肖湘宁, 郭春林, 高本锋, 等. 电力系统次同步振荡及其抑制方法[M]. 北京: 机械工业出版社, 2014. [14] Fan L, Kavasseri R, Miao Z L, et al. Modeling of DFIG-based wind farms for SSR analysis[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2073- 2082. [15] Fan L, Zhu C, Miao Z, et al. Modal analysis of a dfig-based wind farm interfaced with a series compensated network[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1010-1020. [16] 解大, 冯俊淇, 娄宇成, 等. 基于三质量块模型的双馈风机小信号建模和模态分析[J]. 中国电机工程学报, 2013, 31(增刊1): 21-29. Xie Da, Feng Junqi, Lou Yucheng, et al. Small-signal modelling and modal analysis of DFIG-based wind turbine based on three-mass shaft model[J]. Proceedings of the CSEE, 2013, 33(S1): 21-29. [17] 鲁玉普, 解大, 孙俊博, 等. 风电场机网扭振的小信号建模及仿真[J]. 电网技术, 2016, 40(4): 1120- 1127. Lu Yupu, Xie Da, Sun Junbo, et al. Small signal modeling and simulation for torsional vibration of wind farms[J]. Power System Technology, 2016, 40(4): 1120-1127. [18] 周镇, 孙近文, 曾凡涛, 等. 考虑风机接入的电力系统小信号稳定优化控制[J]. 电工技术学报, 2014, 29(增刊1): 424-431. Zhou Zhen, Sun Jinwen, Zeng Fantao, et al. Optimal supplementary control for small signal stability of power system with DFIG integration[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 424-431. [19] 高本锋, 李忍, 杨大业, 等. 双馈风电机组次同步振荡阻尼特性与抑制策略[J]. 电力自动化设备, 2015, 35(12): 11-20. Gao Benfeng, Li Ren, Yang Daye, et al. Damping characteristics and countermeasure of DFIG sub- synchronous oscillation[J]. Electric Power Automation Equipment, 2015, 35(12): 11-20. [20] 张丹. 高压直流输电系统次同步振荡的特征值分析与控制[D]. 北京: 华北电力大学, 2011. [21] Yang L, Xiao X N, Pang C Z. Oscillation analysis of a DFIG-based wind farm interfaced with LCC- HVDC[J]. Science China Technological Sciences, 2014, 57(12): 2453-2465. [22] 杨琳. 新能源电力系统的次同步振荡与阻尼控制特性研究[D]. 北京: 华北电力大学, 2015.