The Quantitative Detection of SF6 Characteristic Decomposition Component H2S Based on Cantilever Enhanced Photoacoustic Spectrometry
Zhang Xiaoxing1, Li Xin1, Liu Heng1,2, Li Jian1,3, Cheng Zheng1
1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China 2.State Grid Chongqing Nan’an Power Supply Company Chongqing 400060 China 3.The Chinese People’s Liberation Army 77109 Troops Chongqing 400074 China
Abstract:As one of the key characteristic components caused by SF6 decomposition in the SF6 gas insulated electrical equipment,H2S could effectively reflect the severity of the internal insulation faults and whether the faults involve solid insulation material.The paper builds a cantilever enhanced photoacoustic (PA) spectrometry (CEPAS) trace gas detection system based on the micro cantilever microphone and distributed feedback-diode laser.The characteristic absorption line of H2S with a central wavenumber of 6 336.62 cm-1 in v1+v2+v3 overtones absorption band is selected as the study objective.The frequency response of the CEPAS detection system is tested,and the quantitative relationship between the PA signal amplitude and the gas concentration is studied.The results show that there is a good linear relationship between the PA signal amplitude and the gas concentration.The detection limit of the CEPAS system for tracing H2S in N2 is 0.84*10-6,and H2S in SF6 is 1.75*10-6.It may be a powerful data supplement for the SF6 decomposition components method in recognizing the internal fault category and severity of the SF6 gas insulation electrical equipment.
张晓星, 李新, 刘恒, 李健, 程政. 基于悬臂梁增强型光声光谱的SF6特征分解组分H2S定量检测[J]. 电工技术学报, 2016, 31(15): 187-196.
Zhang Xiaoxing, Li Xin, Liu Heng, Li Jian, Cheng Zheng. The Quantitative Detection of SF6 Characteristic Decomposition Component H2S Based on Cantilever Enhanced Photoacoustic Spectrometry. Transactions of China Electrotechnical Society, 2016, 31(15): 187-196.
[1] 张晓星,姚尧,唐炬,等.SF6放电分解气体组分分析的现状和发展[J].高电压技术,2008,34(4):664-669. Zhang Xiaoxing,Yao Yao,Tang Ju,et al.Actuality and perspective of proximate analysis of SF6 decomposed[J].High Voltage Engineering,2008,34(4):664-669. [2] 郑晓光,郑宇,唐念,等.GIS内环氧树脂绝缘沿面放电强度与产气关联规律的模拟实验[J].电工技术学报,2015,30(17):172-179. Zheng Xiaoguang,Zheng Yu,Tang Nian,et al.Analog experiment on the relationship between the intensity of epoxy solid insulation surface discharge and the increasing law of characteritic gas in GIS[J].Transactions of China Electrotechnical Society,2015,30(17):172-179. [3] Derdouri A,Casanovas J,Grob R,et al.Spark decomposition of SF6/H2O mixtures[J].IEEE Transactions on Electrical Insulation,1989,24(6):1147-1157. [4] 毛知新,文劲宇.光声光谱技术在油浸式电气设备故障气体检测中的应用[J].电力系统保护与控制,2015,43(7):76-82. Mao Zhixin,Wen Jinyu.Dissolved gas analysis in oil-immersed electrical equipment based on photoacoustic spectroscopy[J].Power System Protection and Control,2015,43(7):76-82. [5] Belmadani B,Casanovas J,Casanovas A.SF6 decomposition under power arcs.Ⅱ.chemical aspects[J].IEEE Transactions on Electrical Insulation,1991,26(6):1177-1182. [6] 颜湘莲,王承玉,季严松,等.气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J].电工技术学报,2015,30(22):231-238. Yan Xianglian,Wang Chengyu,Ji Yansong,et al.Modeling of the relation between SF6 decomposition products and interior faults in gas insulated equipment[J].Transactions of China Electrotechnical Society,2015,30(22):231-238. [7] Van Brunt R.Production rates for oxyfluorides SOF2,SO2F2,and SOF4[J].Are Brought to Light,1985,90(3):229. [8] 王涛云,马宏忠,崔杨柳,等.基于可拓分析和熵值法的GIS状态评估[J].电力系统保护与控制,2016,44(8):115-120. Wang Taoyun,Ma Hongzhong,Cui Yangliu,et al.Condition evaluation of gas insulated switchgear based on extension analysis and entropy method[J].Power System Protection and Control,2016,44(8):115-120. [9] Chu F.SF6 decomposition in gas-insulated equipment[J].IEEE Transactions on Electrical Insulation,1986,EI-21(5):693-725. [10]唐炬,潘建宇,姚强,等.SF6在故障温度为300~400 ℃时的分解特性研究[J].中国电机工程学报,2013,33(31):202-210. Tang Ju,Pan Jianyu,Yao Qiang,et al.Decomposition characteristic study of SF6 with fault temperature between 300~400 ℃[J].Proceedings of the CSEE,2013,33(31):202-210. [11]程林,唐炬,黄秀娟,等.SF6局部过热状态下涉及有机绝缘材料的分解产物生成特性[J].高电压技术,2015,42(2):453-460. Cheng Lin,Tang Ju,Huang Xiujuan,et al.SF6 partial overheating decomposition characteristics with organic insulating materials[J].High Voltage Engineering,2015,42(2):453-460. [12]郑龙江,李鹏,秦瑞峰,等.气体浓度检测光学技术的研究现状和发展趋势[J].激光与光电子学进展,2008,45(8):24-32. Zheng Longjiang,Li Peng,Qin Ruifeng,et al.Research situation and developing tendency for optical measurement technology of gas density[J].Laser & Optoeletronics Progress,2008,45(8):24-32. [13]陈伟根,万福,周渠,等.基于光声光谱检测的变压器油中溶解乙炔气体的压强特性[J].电工技术学报,2015,30(1):112-119. Chen Weigen,Wan Fu,Zhou Qu,et al.Pressure characteristics of dissolved acetylene in transformer oil based on photoacoustic spectroscopy detection[J].Transactions of China Electrotechnical Society,2015,30(1):112-119. [14]毛知新,文劲宇.变压器油中溶解气体光声光谱检测技术研究[J].电工技术学报,2015,30(7):135-143. Mao Zhixin,Wen Jinyu.Research on the Detection of the dissolved gas in the transformer oil by photoacoustic spectroscopy[J].Transactions of China Electrotechnical Society,2015,30(7):135-143. [15]赵笑笑,云玉新,陈伟根.变压器油中溶解气体的在线监测技术评述[J].电力系统保护与控制,2009,37(23):187-191. Zhao Xiaoxiao,Yun Yuxin,Chen Weigen.Comment on on-line monitoring techniques for dissolved gas in transformer oil[J].Power System Protection and Control,2009,37(23):187-191. [16]Sievil P,Chekurov N,Raittila J,et al.Sensitivity-improved silicon cantilever microphone for acousto-optical detection[J].Sensors and Actuators A:Physical,2013,190(1):90-95. [17]Lindley R E,Parkes A M,Keen K A,et al.A sensitivity comparison of three photoacoustic cells containing a single microphone,a differential dual microphone or a cantilever pressure sensor[J].Applied Physics B,2007,86(4):707-713. [18]Brown L R,Naumenko O V,Polovtseva E R,et al.Hydrogen sulfide absorption spectrum in the 5 700~6 600 cm-1 spectral region[C]//Proceedings of the 14th Symposium on High-Resolution Molecular Spectroscopy,Kransnoyarsk,Russia,2004. [19]Swinehart D.The beer-lambert law[J].Journal of Chemical Education,1962,39(7):333. [20]IEC.60480-2004 Guidelines for the checking and treatment of sulfur hexafluoride (SF6) taken from electrica1 equipment and specification for its re-use[S].Geneva:IEC.2004. [21]Beyer C,Jenett H,Klockow D.Influence of reactive SFX gases on electrode surfaces after electrical discharges under SF6 atmosphere[J].IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(2):234-240. [22]Okabe S,Kaneko S,Minagawa T,et al.Detecting characteristics of SF6 decomposed gas sensor for insulation diagnosis on gas insulated switchgears[J].IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):251-258. [23]张晓星,任江波,胡耀垓,等.SF6局部放电分解组分长光程红外检测[J].电工技术学报,2012,27(5):70-76. Zhang Xiaoxing,Ren Jiangbo,Hu Yaogai,et al.Research on long optical paths for SF6 partial discharge decomposition components’ infrared detection[J].Transactions of China Electrotechnical Society,2012,27(5):70-76. [24]张晓星,刘恒,张英,等.基于光声光谱峰面积的微量乙炔气体定量检测[J].高电压技术,2015,41(3):857-863. Zhang Xiaoxin,Liu Heng,Zhang Ying,et al.Quantum detection of trace acetylene gas based on the peak area of photoacoustic spectroscopy[J].High Voltage Engineering,2015,41(3):857-863. [25]Gondal M,Dastgeer A,Shwehdi M.Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries[J].Talanta,2004,62(1):131-41. [26]Yilmaz B,Arslan S.Determination of atenolol in human urine by gas chromatography-mass spectrometry method[J].Journal of Chromatographic Science,2011,49(5):365-369.