Variable Step-Size Control Method of Large Capacity Battery Energy Storage System Based on the Life Model
Chai Wei1, Li Zheng1, Cai Xu1, Wei Xiaoguang2
1. Wind Power Research Center School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China; 2. State Grid Smart Grid Research Institute Beijing 102200 China
Abstract:Battery energy storage system (BESS) can improve the schedule ability of wind power. In order to study the control method of BESS life extension, a multifactor life model is developed considering series/parallel and charge/discharge characteristics of BESS. This proposed model can represent the effects on BESS aging, such as charge/discharge rate, control step-size, charge/discharge time and temperature. A variable step-size control method is proposed, after discussing the effects of the control step-size and the dispatch period on BESS life and the fluctuation index. A fuzzy variable step-size controller is designed to adjust the step-size according to charge/discharge rate and fluctuation index. Results indicate that the proposed control strategy combines the longer life feature under large step-size with less volatile feature under small step-size, which enables the power injected to the grid to track the dispatch orders well and the wind farm to be schedulable. Meanwhile, the proposed strategy can improve the life of BESS.
柴炜, 李征, 蔡旭, 魏晓光. 基于使用寿命模型的大容量电池储能系统变步长优化控制方法[J]. 电工技术学报, 2016, 31(14): 58-66.
Chai Wei, Li Zheng, Cai Xu, Wei Xiaoguang. Variable Step-Size Control Method of Large Capacity Battery Energy Storage System Based on the Life Model. Transactions of China Electrotechnical Society, 2016, 31(14): 58-66.
[1] Khalid M, Savkin A V. A model predictive control approach to the problem of wind power smoothing with controlled battery storage[J]. Renewable Energy, 2010, 35(7): 1520-1526. [2] 熊雄, 杨仁刚, 叶林, 等. 电力需求侧大规模储能系统经济性评估[J]. 电工技术学报, 2013, 28(9): 224-230. Xiong Xiong, Yang Rengang, Ye Lin, et al. Economic evaluation of large-scale energy storage allocation in power demand side[J]. Transactions of China Electro- technical Society, 2013, 28(9): 224-230. [3] Rabiee A, Khorramdel H, Aghaei J. A review of energy storage systems in microgrids with wind tur- bines[J]. Renewable and Sustainable Energy Reviews, 2013, 18(1): 316-326. [4] 张建华, 于雷, 刘念, 等. 含风/光/柴/蓄及海水淡化负荷的微电网容量优化配置[J]. 电工技术学报, 2014, 29(2): 102-112. Zhang Jianhua, Yu Lei, Yiu Nian, et al. Capacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desa- lination load[J]. Transactions of China Electro- technical Society, 2014, 29(2): 102-112. [5] Dicorato M, Forte G, Pisani M, et al. Planning and operating combined wind-storage system in elec- tricity market[J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 209-217. [6] Perez E, Beltran H, Aparicio N, et al. Predictive power control for PV plants with energy storage[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 482-490. [7] 丁明, 吴建锋, 朱承治, 等. 具备荷电状态调节功能的储能系统实时平滑控制策略[J]. 中国电机工程学报, 2013, 33(1): 22-29. Ding Ming, Wu Jianfeng, Zhu Chengzhi, et al. A real- time smoothing control strategy with SOC adjustment function of storage systems[J]. Proceedings of the CSEE, 2013, 33(1): 22-29. [8] Li X. Fuzzy adaptive Kalman filter for wind power output smoothing with battery energy storage system[J]. IET Renewable Power Generation, 2012, 6(5): 340- 347. [9] Liu X, Aichhorn A, Liu L, et al. Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration[J]. IEEE Transactions on Smart Grid, 2012, 3(2): 897-906. [10] 鲍冠南, 陆超, 袁志昌, 等. 基于动态规划的电池储能系统削峰填谷实时优化[J]. 电力系统自动化, 2012, 36(12): 11-16. Bao Guannan, Lu Chao, Yuan Zhichang, et al. Load shift real-time optimization strategy of battery energy storage system based on dynamic programming[J]. Automation of Electric Power Systems, 2012, 36(12): 11-16. [11] 吴雄, 王秀丽, 李骏, 等. 风电储能混合系统的联合调度模型及求解[J]. 中国电机工程学报, 2013, 33(13): 10-17. Wu Xiong, Wang Xiuli, Li Jun, et al. A joint operation model and solution for hybrid wind energy storage systems[J]. Proceedings of the CSEE, 2013, 33(13): 10-17. [12] Ye Y, Shi Y, Tay A A O. Electro-thermal cycle life model for lithium iron phosphate battery[J]. Journal of Power Sources, 2012, 217(11): 509-518. [13] Wang J, Liu P, Hicks-gamner J, et al. Cycle-life model for graphite-LiFePO 4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948 [14] Zhou C, Qian K, Allan M, et al. Modeling of the cost of EV battery wear due to V2G application in power systems[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1041-1050. [15] Yang S C, Li M, Tang T Q, et al. An electric vehicle’s battery life model under car-following model[J]. Measurement, 2013, 46(10): 4226-4231. [16] 施琳, 罗毅, 涂光瑜, 等. 考虑风电场可调度性的储能容量配置方法[J]. 电工技术学报, 2013, 28(5): 120-127. Shi Lin, Luo Yi, Tu Guangyu, et al. Energy storage sizing method considering diapatchability of wind farm[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 120-127. [17] Tran D, Khambadkone A M. Energy management for lifetime extension of energy storage system in micro- grid applications[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1289-1296.