Performance of Non-Supplementary Fired Compressed Air Energy Storage with Molten Salt Heat Storage
Xue Xiaodai1, Chen Xiaotao1, Mei Shengwei1, Chen Laijun1, Lin Qiyou2
1. State Key Lab of Control and Simulation of Power Systems and Generation EquipmentsTsinghua University Beijing 100084 China; 2. State Grid Wuhu Electric Power Company Wuhu 241027 China
Abstract:A non-supplementary fired compressed air energy storage (CAES) with molten salt thermal storage is proposed in this paper. Combined molten salt with compressed air energy storage, this system can achieve mass storage and efficient conversion of electrical energy. The off-peak power or abandoned wind and photoelectric power is converted into high-grade thermal energy, which is stored in the molten salt heat storage system. Meanwhile the air is compressed to high pressure and then stored in the gas storage device. The high pressure air heated by the molten salt can drive turbine to generate electricity when it is needed. The process design is completed with basic principle of thermodynamic analysis, and the key factors that affect the system efficiency are explored. The results show that the storage efficiency can be significantly improved by increasing the thermal storage temperature and turbine inlet pressure, which could provide a reference for compressed air energy storage as well as the renewable energy.
薛小代, 陈晓弢, 梅生伟, 陈来军, 林其友. 采用熔融盐蓄热的非补燃压缩空能发电系统性能[J]. 电工技术学报, 2016, 31(14): 11-20.
Xue Xiaodai, Chen Xiaotao, Mei Shengwei, Chen Laijun, Lin Qiyou. Performance of Non-Supplementary Fired Compressed Air Energy Storage with Molten Salt Heat Storage. Transactions of China Electrotechnical Society, 2016, 31(14): 11-20.
[1] 任东明, 谢旭轩, 刘坚. 推动我国能源生产和消费革命初析[J]. 中国能源, 2013, 35(10): 6-10. Ren Dongming, Xie Xuxuan, Liu Jian. To promote energy production and consumption revolution in China[J]. Energy of China, 2013, 35(10): 6-10. [2] 袁铁江, 陈洁, 刘沛汉, 等. 储能系统改善大规模风电场出力波动的策略[J]. 电力系统保护与控制, 2014, 42(4): 47-53. Yuan Tiejiang, Chen Jie, Liu Peihan, et al. Strategy of improving large-scale wind farm output fluctuation based on energy storage system[J]. Power System Protection and Control, 2014, 42(4): 47-53. [3] 郭芳, 邓长虹, 廖毅, 等. 功率平滑用电池储能系统的功率响应特性研究[J]. 电工技术学报, 2015, 30(12): 434-440. Guo Fang, Deng Changhong, Liao Yi, et al. Research on the response characteristics of BESS used in power smoothing[J]. Transactions of China Electro- technical Society, 2015, 30(12): 434-440. [4] 饶成诚, 王海云, 王维庆, 等. 基于储能装置的柔性直流输电技术提高大规模风电系统稳定运行能力的研究[J]. 电力系统保护与控制, 2014, 42(4): 1-7. Rao Chengcheng, Wang Haiyun, Wang Weiqing, et al. Enhancement of the stable operation ability of large-scale wind power system based on the VSC- HVDC embedded in energy storage apparatus[J]. Power System Protection and Control, 2014, 42(4): 1-7. [5] 罗剑波, 陈永华, 刘强. 大规模间歇性新能源并网控制技术综述[J]. 电力系统保护与控制, 2014, 42(22): 140-146. Luo Jianbo, Chen Yonghua, Liu Qiang. Research on the response characteristics of BESS used in power smoothing[J]. Power System Protection and Control, 2014, 42(22): 140-146. [6] 杨田, 刘晓明, 吴其, 等. 储能电站对电网相称性混合的影响研究[J]. 电工技术学报, 2015, 30(13): 63-68. Yang Tian, Liu Xiaoming, Wu Qi, et al. Research on the effect of energy storage station on assortative mixing in the power grid[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 63-68. [7] 李鹏. 电力需求响应机制下含电池储能系统的风光互补发电系统经济调度研究[J]. 电气技术, 2015, 16(3): 57-60. Li Peng. Wind/PV contain storage system economic operation study based on power demand response mechanism[J]. Electrical Engineering, 2015, 16(3): 57-60. [8] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 455-464. Huang Jiyuan, Li Xinran, Cao Yijia, et al. Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 455-464. [9] 陈来军, 梅生伟, 王俊杰, 等.面向智能电网的大规模压缩空气储能技术[J]. 电工电能新技术, 2014, 33(6): 1-6. Chen Laijun, Mei Shengwei, Wang Junjie, et al. Smart grid oriented large-scale compressed air energy storage technology[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(6): 1-6. [10] Mei Shengwei, Wang Junjie, Tian Fang, et al. Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC- 500[J]. Science China: Technological Sciences, 2015, 58(4): 600-611. [11] 田崇翼, 张承慧, 李珂, 等.含压缩空气储能的微网复合储能技术及其成本分析[J]. 电力系统自动化, 2015, 39(10): 36-41. Tian Chongyi, Zhang Chenghui, Li Ke, et al. Composite energy storage technology with com- pressed air energy storage in microgrid and its cost analysis[J]. Automation of Electric Power Systems, 2015, 39(10): 36-41. [12] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151. Chen Haisheng, Liu Jinchao, Guo Huan, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151. [13] 谢刚. 熔融盐理论与应用[M]. 北京: 冶金工业出版社, 1998. [14] 吴玉庭, 张丽娜, 马重芳. 太阳能热发电高温蓄热技术[J]. 太阳能, 2007(3): 23-25. Wu Yuting, Zhang Lina, Ma Chongfang. Solar energy thermal power generation high-temperature heat storage technologies[J]. Solar Energy, 2007(3): 23-25. [15] 彭强. 多元熔盐传热蓄热材料的设计及性能调控[D]. 广州: 中山大学, 2011. [16] 左远志, 丁静, 杨晓西. 蓄热技术在聚焦式太阳能热发电系统中的应用现状[J]. 化工进展, 2006, 25(9): 995-1000. Zuo Yuanzhi, Ding Jing, Yang Xiaoxi. Status of the application of the heat storage technologies in concentrating type solar energy thermal power generation systems[J]. Chemical Industry Progress, 2006, 25(9): 995-1000. [17] Moens L, Blake D M, Rudnicki D L, et al. Advanced thermal storage fluids for solar parabolic trough systems[J]. Journal of Solar Energy Engineering, 2003, 125(1): 112-116. [18] Kenisarin M M. High-temperature phase change materials for thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2010, 14(3): 955-970. [19] Herrmann U, Kearney D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152. [20] 刘斌, 陈来军, 梅生伟, 等. 多级回热式压缩空气储能系统效率评估方法[J]. 电工电能新技术, 2014, 33(8): 1-7. Liu Bin, Chen Laijun, Mei Shengwei, et al. Cycle efficiency evaluation method of multi-stage RCAES system[J]. Advanced Technology of Electrical Engin- eering and Energy, 2014, 33(8): 1-7.