Abstract:Featuring both high bandwidth and high efficiency, paralleled switch-linear hybrid envelope-tracking (SLH ET) power supply wins a lot attentions. This paper proposes a new topology where step-wave converter in parallel with linear amplifier is adopted. It benefits the overall efficiency and tracking bandwidth with lower switching frequency. The structure operates each switcher only once during every tracking period. Compared with other schemes with the same tracking bandwidth, it reduces the switching frequency and harmonic voltage of the output voltage, thus obtains higher efficiency. The consideration of the step number and the step difference are discussed for higher synthesis accuracy and lower voltage harmonics. The full feed-forward output voltage scheme is adopted to enable the output current to track the load current. It avoids that the linear amplifier may provide the fundamental current which reduces the system efficiency. Finally, a prototype ET power source is built aiming for 300kHz sine wave tracking, with 10~26V sine output voltage and 50W peak output power. The experimental results are presented to verify the effectiveness of the proposed method with efficiency being 81.3%. Besides, the step-wave method is proved to obtain higher efficiency and tracking bandwidth, compared with the two-level method.
金茜, 阮新波, 郗焕, 熊小玲. 采用阶梯波方式的高效开关线性复合包络线跟踪电源[J]. 电工技术学报, 2015, 30(18): 43-51.
Jin Qian, Ruan Xinbo, Xi Huan, Xiong Xiaoling. High Efficiency Switch-Linear Hybrid Envelope-Tracking Power Supply by Step-Wave Method. Transactions of China Electrotechnical Society, 2015, 30(18): 43-51.
[1] Raab F H, Asbeck P, Cripps S, et al. Power amplifiers and transmitters for RF and microwave[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 814-826. [2] 郗焕, 熊小玲, 阮新波. 高速电压随动电源的发展及面临的挑战[J]. 电工技术学报, 2011, 26(9): 151-159. Xi Huan, Xiong Xiaoling, Ruan Xinbo. The devel- opment and design challenges of high speed envelope tracking power supply[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 151-159. [3] Wang F, Kimball D F, Popp J D, et al. An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4086-4099. [4] Kanbe A, Kaneta M, Yui F, et al. New architecture for envelope-tracking power amplifier for base station[C]. Proceedings of IEEE APCCAS, 2008: 296-299. [5] 冯建和, 王卫东. 第三代移动网络与移动业务[M]. 北京: 人民邮电出版社, 2007. [6] Hanington G, Chen P, Asbeck P M, et al. High- efficiency power amplifier using dynamic power- supply voltage for CDMA applications[J]. IEEE Trans- actions on Microwave Theory and Techniques, 1999, 47(8): 1471-1476. [7] Wu P Y, Mok P K T. A two-phase switching hybrid supply modulator for RF power amplifiers with 9% efficiency improvement[J]. IEEE Journal of Solid- State Circuits, 2010, 45(12): 2543-2556. [8] Kimball D F, Jinho J, Chin H, et al. High-efficiency envelope-tracking W-CDMA basestation amplifier using GaN HFETs[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3848-3856. [9] Miaja P F, Rodriguez M, Rodriguez A, et al. A linear assisted DC/DC converter for envelope tracking and envelope elimination and restoration applications[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3302-3309. [10] Xi H, Jin Q, Ruan X. Feed-forward scheme considering bandwidth limitation of operational amplifiers for envelope tracking power supply using series-connected composite configuration[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3915-3926. [11] Vasic M, García O, Oliver J A, et al. Multilevel power supply for high-efficiency RF amplifiers[J]. IEEE Trans- actions on Power Electronics, 2010, 25(4): 1078-1089. [12] Xi H, Jin Q, Ruan X, et al. Full feedforward of the output voltage to improve efficiency for envelope- tracking power supply using switch-linear hybrid configuration[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 451-456. [13] Kim D, Choi J, Kang D, et al. High efficiency and wideband envelope tracking power amplifier with sweet spot tracking[C]. IEEE Radio Frequency Integrated Circuits Symposium, 2010: 255-258. [14] Jang S, Ahn K P, Choi Y H, et al. PWM based CMOS supply modulator for LTE envelope tracking transmitter[C]. Proceedings of International Conference on ICT Convergence, 2011: 622-623. [15] 熊小玲, 郗焕, 阮新波. 一种开关线性复合包络线跟踪电源的控制策略[J]. 电工技术学报, 2012, 14(8): 101-107. Xiong Xiaoling, Xi Huan, Ruan Xinbo. A Control strategy for switch-linear hybrid envelope tracking power supply[J]. Transactions of China Electrotechnical Society, 2012, 14(8): 101-107. [16] Rodríguez M, Fernández-Miaja P, Rodríguez A, et al. A multiple-input digitally controlled Buck converter for envelope tracking applications in radio frequency power amplifiers[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 369-381. [17] 汪洋, 罗全明, 支树播, 等. 一种交错并联高升压 BOOST变换器[J]. 电力系统保护与控制, 2013, 41(5):133-139. Wang Yang, Luo Quanming, Zhi Shubo, et al. A new interleaved high step-up Boost converter[J]. Power System Protection and Control, 2013, 41(5):133-139. [18] 屠卿瑞, 徐政, 姚为正. 模块化多电平换流器型直流输电电平数选择研究[J]. 电力系统保护与控制, 2013, 41(20): 33-38. Tu Qingrui, Xu Zheng, Yao Weizheng. Selecting number of voltage levels for modular multilevel converter based HVDC[J]. Power System Protection and Control, 2013, 41(20): 33-38. [19] 卓谷颖, 江道灼, 连霄壤. 模块化多电平换流器不平衡环流抑制研究[J]. 电力系统保护与控制, 2013, 25 (2): 118-124. Zhuo Guying, Jiang Daozhuo, Lian Xiaorang. Study of unbalanced circular current suppressing for modular multilevel converter[J]. Power System Protection and Control, 2013, 25 (2): 118-124. [20] 王奎, 郑泽东, 李永东. 新型模块化多电平变换器电容电压波动规律及抑制方法[J]. 电工技术学报, 2011, 26(5): 8-14. Wang Kui, Zheng Zedong, Li Yongdong. Voltage ripple principle and restrain method of floating capacitors in a new modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 8-14. [21] Hsia C, Zhu A, Yan J J, et al. Digitally assisted dual-switch high-efficiency envelope amplifier for envelope-tracking base-station power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(11): 2943-2952.