Abstract:In the wake of the gradual increase in penetration of distributed power generation systems and the wide distribution of access points, the grid can’t be treated as the ideal sinusoidal voltage source any more. Instead, it contains a large set of grid impedance values, featuring as a weak grid. In this case, the grid-voltage feedforward widely used in grid-connected inverter control will challenge the system stability. Taken the L-filtered grid-connected inverter as an object, the influence mechanism of the feedforward control on the inverter’s characteristics in weak grid is clarified by the equivalent transformations of the control block diagram. Moreover, the effects of the inductance and the resistance-to-inductance ratio of grid impedance on the stability of grid-connected inverter are investigated. Furthermore, a band pass filter (BPF) is incorporated into the feedforward path, to improve the robust stability of the grid-connected inverter in weak grid. As a result, the grid voltage feedforward control with the BPF can ensure that the grid-connected inverter works stably in the weak grid with small short current ratio (SCR) range of the grid impedance. Finally, the experiments on a 66kW inverter prototype have verified the theoretical analyses and the effectiveness of the proposed improved method.
杨树德, 同向前, 尹军, 王海燕, 邓亚平. 增强并网逆变器对电网阻抗鲁棒稳定性的改进前馈控制方法[J]. 电工技术学报, 2017, 32(10): 222-230.
Yang Shude, Tong Xiangqian, Yin Jun, Wang Haiyan, Deng Yaping. An Improved Grid Voltage Feedforward Strategy for Grid-Connected Inverter to Achieve High Robust Stability Against Grid-Impedance Variation. Transactions of China Electrotechnical Society, 2017, 32(10): 222-230.
[1] 黄帅, 龙燕, 赵宏伟, 等. 重要区域孤岛微电网抗毁性规划初探[J]. 电工技术学报, 2016, 31(5): 77-84. Huang Shuai, Long Yan, Zhao Hongwei, et al. Preli- minary study on stand-alone microgrid invulnera- bility planning in important areas[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 77-84. [2] 刘波, 金昊. 永磁直驱风电系统双PWM变换器前馈补偿控制[J]. 电力系统保护与控制, 2014, 42(15): 52-57. Liu Bo, Jin Hao. Feed forward compensation control of dual PWM converter for permanent magnet direct driven wind turbine[J]. Power System Protection and Control, 2014, 42(15): 52-57. [3] 陈仲, 陈淼, 王志辉. 400Hz有源滤波器闭环控制建模及其动态性能分析[J]. 电工技术学报, 2014, 29(12): 50-57. Chen Zhong, Chen Miao, Wang Zhihui. Closed-loop control modeling and dynamic performance analysis of 400Hz active filter[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 50-57. [4] 郑诗程, 徐礼萍, 郎佳红, 等. 基于重复PI控制和前馈控制的静止无功发生器[J]. 电工技术学报, 2016, 31(6): 219-225. Zheng Shicheng, Xu Liping, Lang Jiahong, et al. Static var generator based on repetitive PI control and feedforward control[J]. Transactions of China Elec- trotechnical Society, 2016, 31(6): 219-225. [5] 曾宪金, 李小为, 胡立坤, 等. 基于自然坐标与功率前馈的三相电压型PWM变流器控制[J]. 电力系统保护与控制, 2015, 43(11): 13-20. Zeng Xianjin, Li Xiaowei, Hu Likun, et al. Natural coordinate and power feedforward control of three-phase voltage-source PWM converter[J]. Power System Protection and Control, 2015, 43(11): 13-20. [6] 李小强, 伍小杰, 耿乙文, 等. 感性电网阻抗下三相光伏逆变器稳定性分析[J]. 中国电机工程学报, 2014, 34(18): 2906-2916. Li Xiaoqiang, Wu Xiaojie, Geng Yiwen, et al. Stability analysis of three-phase PV inverter under inductive grid impedance condition[J]. Proceedings of the CSEE, 2014, 34(18): 2906-2916. [7] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335. Yang Dongsheng, Ruan Xinbo, Wu Heng. A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2014, 34(15): 2327-2335. [8] 滕宇, 王学华, 余辉, 等. 提高LCL型并网逆变器对电网阻抗鲁棒性的阻抗调节方法[J]. 中国电机工程学报, 2015, 35(增刊): 197-204. Teng Yu, Wang Xuehua, Yu Hui, et al. A grid impedance shaping method to improve robustness of LCL-type grid-connected inverter against grid impedance variation[J]. Proceedings of the CSEE, 2015, 35(S): 197-204. [9] 杨明, 周林, 张东霞, 等. 考虑电网阻抗影响的大型光伏电站并网稳定性分析[J]. 电工技术学报, 2013, 28(9): 214-223. Yang Ming, Zhou Lin, Zhang Dongxia, et al. Stability analysis of large-scale photovoltaic power plants for the effect of grid impedance[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 214- 223. [10] 周林, 张密, 居秀丽, 等. 电网阻抗对大型并网光伏系统稳定性影响分析[J]. 中国电机工程学报, 2013, 33(34): 34-41. Zhou Lin, Zhang Mi, Ju Xiuli, et al. Stability analysis of large-scale photovoltaic plants due to grid impedances[J]. Proceedings of the CSEE, 2013, 33(34): 34-41. [11] 潘冬华, 阮新波, 王学华, 等. 增强LCL型并网逆变器对电网阻抗鲁棒性的控制参数设计[J]. 中国电机工程学报, 2015, 35(10): 2558-2566. Pan Donghua, Ruan Xinbo, Wang Xuehua, et al. Controller design for LCL-type grid-connected inverter to achieve high robustness against grid- impedance variation[J]. Proceedings of the CSEE, 2015, 35(10): 2558-2566. [12] Abusara M, Sharkh S, Zanchetta P. Adaptive repetitive control with feedforward scheme for grid- connected inverters[J]. IET Power Electronics, 2015: 1-8. [13] Yan Q, Wu X, Yuan X, et al. An improved grid-voltage feedforward strategy for high-power three-phase grid-connected inverters based on the simplified repetitive predictor[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3880-3897. [14] Xu J, Xie S, Tang T. Evaluations of current control in weak grid case for grid-connected LCL-filtered inverter[J]. IET Power Electronics, 2013, 6(2): 98- 106. [15] 许津铭, 谢少军, 唐婷. 弱电网下LCL滤波并网逆变器自适应电流控制[J]. 中国电机工程学报, 2014, 34(24): 4031-4039. Xu Jinming, Xie Shaojun, Tang Ting. An adaptive current control for grid-connected LCL-filtered inverters in weak grid case[J]. Proceedings of the CSEE, 2014, 34(24): 4031-4039. [16] Xu J, Qiang Q, Xie S, et al. Grid-voltage feedforward based control for grid-connected LCL-filtered inverter with high robustness and low grid current distortion in weak grid[C]//IEEE Applied Power Electronics Conference and Exposition, Long Beach, 2016: 1919-1925. [17] Freijedo F D, Vidal A, Yepes A G, et al. Tuning of synchronous-frame PI current controllers in grid- connected converters operating at a low sampling rate by MIMO root locus[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5006-5016. [18] 张宸宇, 梅军, 郑建勇, 等. 基于内置重复控制器改进无差拍的有源滤波器双滞环控制方法[J]. 电工技术学报, 2015, 30(22): 124-132. Zhang Chenyu, Mei Jun, Zheng Jianyong, et al. Active power filter double hysteresis method with improved deadbeat control based on built-in repeti- tive controller[J]. Transactions of China Electro- technical Society, 2015, 30(22): 124-132. [19] Ji C, Zanchetta P, Carastro F, et al. Repetitive control for high-performance resonant pulsed power supply in radio frequency applications[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2660-2670. [20] Song Y, Nian H. Enhanced grid-connected operation of DFIG using improved repetitive control under generalized harmonic power grid[J]. IEEE Transa- ctions on Energy Conversion, 2015: 1-11. [21] 史丽萍, 蔡儒军, 陈丽兵, 等. 三相三线制有源滤波器的改进无差拍控制[J]. 电力系统保护与控制, 2014, 42(14): 32-37. Shi Liping, Cai Rujun, Chen Libing, et al. A deadbeat control scheme for three-phase three-wire active power filter[J]. Power System Protection and Control, 2014, 42(14): 32-37. [22] 王禹玺, 刘秦维, 刘伟, 等. 一种加权式并联型重复控制的研究[J]. 电工技术学报, 2015, 30(8): 127-134. Wang Yuxi, Liu Qinwei, Liu Wei, et al. Study of weighted parallel-type repetitive control[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(8): 127-134. [23] Erickson R W, Maksimovic D. Fundamentals of power electronics[M]. Norwell: MA: Kluwer, 2001. [24] Yang D, Ruan X, Wu H. Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition[J]. IEEE Transactions on Power Electronics, 2014, 29(29): 5795-5805.