Abstract:The fault diagnosis location and diagnosis causation of grid-connected solar photovoltaic systems are described, and the algorithm of fault tree(FT), the structure and algorithm of bidirectional associative memory(BAM) neural network are also described. Aimed at the faults of grid-connected solar photovoltaic system, the method of fault diagnosis based on fault tree and bidirectional associative memory neural network is brought out in this paper. The priori knowledge and experience of system diagnosis are introduced to fault tree analysis(FTA). The learning sample of BAM neural network is deduced by the corresponding relations between the fault modes and the fault analysis. The experiments and application of solar photovoltaic grid-connected fault diagnosis system show that this method has good real-time performance and effectiveness.
作者简介: 李练兵 男,1972年生,教授,硕士生导师,研究方向为电力电子与新能源技术。张秀云 女,1988年生,硕士研究生,研究方向为新能源转换理论与控制工程。 故障树分析法(Fault Tree Analysis,FTA)是美国贝尔电话研究所的沃森(Watson)和默恩斯(Mearns)于1961~1962年在民兵式导弹发射控制系统的设计中开发的,是一种将系统故障形成原因按树枝状逐级细化的图形演绎方法,把所研究系统的最不希望发生的故障状态作为故障分析的目标,然后逐级寻找导致这一故障发生的因素,直至无需再探究的因素为止,是国际上公认的一种直观、有效的可靠性分析和故障诊断方法。
引用本文:
李练兵,张秀云,王志华,王志强. 故障树和BAM神经网络在光伏并网故障诊断中的应用[J]. 电工技术学报, 2015, 30(2): 248-254.
Li Lianbing,Zhang Xiuyun,Wang Zhihua,Wang Zhiqiang. Fault Diagnosis in Solar Photovoltaic Grid-Connected Power System Based on Fault Tree and BAM Neural Network. Transactions of China Electrotechnical Society, 2015, 30(2): 248-254.
[1] 曹连彬, 宋卫平, 韩如成. 故障树在光伏并网系统失效研究中的应用[J]. 电气技术, 2012(4): 36-37. Cao Lianbin, Song Weiping, Han Rucheng. Fault diagnosis in solar photovoltaic grid-connected power system based on fault tree[J]. Electrical Engineering, 2012(4): 36-37. [2] 郭创新, 游家训, 彭明伟, 等. 基于面向元件神经网络与模糊积分融合技术的电网故障智能诊断[J]. 电工技术学报, 2010, 25(9): 183-190. Guo Chuangxin, You Jiaxun, Peng Mingwei, et al. A fault intelligent diagnosis approach based on element- oriented artificial neural networks and fuzzy integral fusion[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 183-190. [3] 杭俊, 张建忠, 程明, 等. 风力发电系统状态监测和故障诊断技术综述[J]. 电工技术学报, 2013, 28(4): 261-271. Hang Jun, Zhang Jianzhong, Cheng Ming, et al. An overview of condition monitoring and fault diagnostic for wind energy conversion system[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 261- 271. [4] 公丕平, 杨小强, 崔中清, 等. 基于BP神经网络的某型装备故障诊断专家系统[J]. 信息技术, 2012, 41(5): 125-126. Gong Peiping, Yang Xiaoqiang, Cui Zhongqing, et al. Fault diagnosis expert system of certain type equip- ment based on neural network[J]. Machine Building & Automation, 2012, 41(5): 125-126. [5] 朱继洲. 故障树原理和应用[M]. 西安: 西安交通大学, 1989. [6] 王新勇, 陈涛. 采用变频器故障树为训练样本的BAM神经网络故障诊断方法[J]. 电光与控制, 2011, 18(5): 85-89. Wang Xinyong, Chen Tao. A fault diagnosis method for inverter based on BAM neural network and fault tree[J]. Electronics Optics & Control, 2011, 18(5): 85-89. [7] Fa Bo, Yin Yixin, Fu Cunfa. The bidirectional associative memory neural network based on fault tree and its application to inverter’s fault diagnosis [C]. IEEE, 2009: 209-213. [8] 龚瑞昆, 马亮, 赵延军, 等. 基于量子神经网络信息融合的变压器故障诊断[J]. 电力系统保护与控制, 2011, 39(23): 79-84. Gong Ruikun, Ma Liang, Zhao Yanjun, et al. Fault diagnosis for power transformer based on quantum neural network information fusion[J]. Power System Protection and Control, 2011, 39(23): 79-84. [9] 刘迅. 基于故障树与BAM神经网络的智能故障诊断方法[J]. 科学技术与工程, 2010, 10(13): 3101- 3105. Liu Xun. The method of intelligent fault diagnosis based on fault tree and bam neural network[J]. Science Technology and Engineering, 2010, 10(13): 3101-3105. [10] 王成福, 李锐, 刘辉荣. 光伏发电监控系统的设计与实现[J]. 电力系统通信, 2011, 32(224): 53-57. Wang Chengfu, Li Rui, Liu Huirong. The design and implementation of photovoltaic power generation monitor control system[J]. Telecommunications for Electric Power System, 2011, 32(224): 53-57. [11] 许化东. 基于故障树分析法的汽车故障诊断专家系统的研究[D]. 合肥: 合肥工业大学, 2002. [12] 苗伟, 范波, 王新勇, 等. 一种融合FTA与BAM的故障诊断方法[J]. 微电子学与计算机, 2010, 27(6): 61-63. Miao Wei, Fan Bo, Wang Xinyong, et al. One method of fault diagnosis based on the fuse of FTA and BAM[J]. Microelectronics & Computer, 2010, 27(6): 61-63. [13] 刘毅, 高振兴, 郭创新, 等. 一种考虑多层信息融合的电网故障诊断辅助决策方法[J]. 电力系统保护与控制, 2010, 38(24): 14-18. Liu Yi, Gao Zhenxing, Guo Chuangxin, et al. An assistant decision-making for fault diagnosis based on multilayer information fusion[J]. Power System Protection and Control, 2010, 38(24): 14-18. [14] 徐瑞东, 陈昊, 胡义华, 等. 基于高斯过程的光伏阵列故障定位[J]. 电工技术学报, 2013, 28(6): 249-256. Xu Ruidong, Chen Hao, Hu Yihua, et al. Fault location of photovoltaic array based on gaussian process[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 249-256. [15] 王家林, 夏立, 吴正国, 等. 电力系统故障诊断研究现状与展望[J]. 电力系统保护与控制, 2010, 38(18): 210-216. Wang Jialin, Xia Li, Wu Zhengguo, et al. State of arts of fault diagnosis of power systems[J]. Power System Protection and Control, 2010, 38(18): 210- 216. [16] Lian Ke, Huang Jianguo, Long Bing. Fuzzy multiple fault diagnosis algorithm based on digraph model[J]. Systems Engineering and Electronic, 2008, 30(3): 568-571. [17] 胡严思. 基于FTA和BAM神经网络的飞机故障诊断系统研究[D]. 长沙: 湖南大学, 2012.