Application of Adaptive Wavelet Neural Network Based on Particle Swarm Optimization Algorithm in Online PD Pattern Recognition
Luo Xin1, 3, Niu Haiqing1, Lai Liyong2, Shen Yangyang1, Wu Qian2
1. South China University of Technology Guangzhou 510641 China; 2. Guangzhou Power Supply Co., Ltd. Guangzhou 510620 China; 3. China Southern Power Grid EHV Transmission Company Guangzhou 510620 China
Abstract:The (partial discharge, PD) signal of XLPE cable may come not only from the body of the cable and its termination, but also from the corona discharge or surface discharge of the switchgear connected with the cable. Different PD sources have different damages on the equipment, and their differentiating criteria are different too. Therefore it is necessary to recognize different PDs. A new pattern recognition method based on adaptive wavelet neural network is proposed and an adaptive wavelet neural network with four-layer is given to recognize PD source in this paper. Particle swarm optimization algorithm is used to optimize the network first, and then BP algorithm is used to make a second optimization, whose performance is remarkably better than that only using BP algorithm. Influences of different wavelets and different structures to the performance of the adaptive wavelet neural network are discussed. The results show that the adaptive wavelet neural network which is optimized by both particle swarm optimization and BP algorithms is able to recognize PD source accurately and reliably.
[1] 淡文刚, 陈祥训, 郑健超. 采用小波分析与神经网络技术的局部放电统计识别方法[J]. 中国电机工程学报, 2002, 22(9): 1-5. Dan Wengang, Chen Xiangxun, Zheng Jianchao. Classification of partial discharge distribution using wavelet transform and neural network[J]. Proceedings of the CSEE, 2002, 22(9): 1-5. [2] 姜磊, 朱德恒, 李福祺, 等. 基于人工神经网络的变压器绝缘模型放电识别的研究[J]. 中国电机工程学报, 2001, 21(1): 21-24. Jiang Lei, Zhu Deheng, Li Fuqi, et al. ANN based discharge pattern recognition of insulation models of electrical transformers[J]. Proceedings of the CSEE, 2001, 21(1): 21-24. [3] 何正友, 蔡玉梅, 钱清泉. 小波熵理论及其在电力系统故障检测中的应用[J]. 中国电机工程学报, 2005, 25(5): 38-43. He Zhengyou, Cai Yumei, Qian Qingquan. A study of wavelet entropy theory and its application in electric power system fault detection[J]. Proceedings of the CSE, 2005, 25(5): 38-43. [4] 钱勇, 黄成军, 陈陈, 等. 多小波消噪算法在局部放电检测中的应用[J]. 中国电机工程学报, 2007, 27( 6) : 89-95. Qian Yong, Huang Chengjun, Chen Chen, et al. Application of multiwavelet based on denoising algorithm in partial discharge detection[J]. Proceedings of the CSEE, 2007, 27(6): 89-95. [5] 张静远, 张冰, 蒋兴舟. 基于小波变换的特征提取方法分析[J]. 信号处理, 2000, 16(2): 156-162. Zhang Jingyuan, Zhang Bing, Jiang Xingzhou. Analyses of feature extraction methods based on wavelet transform[J]. Signal Processing, 2000, 16(2): 156-162. [6] 李东敏, 刘志刚, 蔡军, 等. 基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法[J]. 电网技术, 2008, 32(24): 65-69. Li Dongmin, Liu Zhigang, Cai Jun, et al. Transmission lines fault recognition method based on multi-wavelet packet coefficient entropy and artificial neural network [J]. Power System Technology, 2008, 32(24): 65-69. [7] Mao P L, Aggarwal R K. A novel approach to the classification of the transient phenomena in power transformer using combined wavelet transform and neural network[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 654- 660. [8] 张举, 王兴国, 李志雷. 小波包能量熵神经网络在电力系统故障诊断中的应用[J]. 电网技术, 2006, 30(5): 72-76. Zhang Ju, Wang Xingguo, Li Zhilei. Application of neural network based on wavelet packet-energy entropy in power system fault diagnosis[J]. Power System Technology, 2006, 30(5): 72-76. [9] Szu H H, Telfer B, Kadambe S. Neural network adaptive wavelets for signal representation and classification[J]. Opt. Eng., 1992, 31(9): 1907-1916. [10] Telfer B A, Szu H H, Dobeck G J, et al. Adaptive wavelet classification of acoustic backscatter and imagery[J]. Optical Engineering, 1994, 33(7): 2190- 2203. [11] 刘春玲, 王旭. 基于改进的自适应小波神经网络的心电信号分类[J]. 系统仿真学报, 2007, 19(14): 3281-3284. Liu Chunling, Wang Xu. New adaptive wavelet neural network for ECG recognition[J]. Journal of System Simulation, 2007, 19(14): 3281-3284. [12] 李海锋. 王钢. 李晓华, 等. 电力变压器励磁涌流判别的自适应小波神经网络方法[J]. 中国电机工程学报, 2005, 25(7): 144-150. Li Haifeng, Wang Gang, Li Xiaohua, et al. Distinguish between inrush and internal fault of transformer based on adaptive wavelet neural network[J]. Proceedings of the CSEE, 2005, 25(7): 144-150. [13] 阳国庆 郑殿春 孙学勇. 基于小波神经网络局部放电模式识别方法的实验研究[J]. 哈尔滨理工大学学报, 2005, 10(5): 98-101. Yang Guoqing, Zheng Dianchun, Sun Xueyong. An experiment study of partial discharge pattern recognition method based on wavelet neural networks[J]. Journal of Harbin University of Science and Technology, 2005, 10(5): 98-101. [14] Lahiri S K, Ghanta K C. Development of a hybrid artificial neural network and genetic algorithm model for regime identification of slurry transport in pipelines[J]. Chemical Product and Process Modeling, 2009, 4(1): 1-32. [15] 马修元, 段钰锋, 刘猛, 等. 基于PSO-BP神经网络的水焦浆管道压降预测[J]. 中国电机工程学报, 2012, 32(5): 54-60. Ma Xiuyuan, Duan Yufeng, Liu Meng, et al. Prediction of pressure drop of coke water slurry flowing in pipeline by PSO-BP neural network[J]. Proceedings of the CSEE, 2012, 32(5): 54-60. [16] 徐长发, 李国宽. 实用小波方法[M]. 武汉: 华中科技大学出版社, 2001. [17] 周力行. 变压器局部放电检测中的小波包去噪算法[J]. 高电压技术, 2001, 27(1): 19-21. Zhou Lixing. Wavelet packet de-noising arithmetic in PD detecting transformer[J]. High Voltage Engineering, 2001, 27(1): 19-21.