Abstract:Electromechanical actuator(EMA) as the flight control system of the servo actuator has the advantages of small size and high power density. Dual-redundancy permanent magnet brushless motor(DRPMBLM) used in servo system improves the reliability of the work. The dual-redundancy servo actuation system mathematical model is established by the different system work modes and DRPMBLM of the structure characteristics of comparison. The cause and consequence of unequal torque in DRPMBLM are analyzed. The equal torque is realized by using crossed-feedback control and equalization algorithm or eliminated unequal torque. Theoretical analysis and experimental results show that the method can effectively eliminate the redundancy motor torque unequal. The system frequency response can achieve 3Hz, which can meet the requirements of electrically powered actuation system of more electric aircraft and all electric aircraft.
罗战强, 梁得亮. 双余度机电作动伺服系统数学模型与特性[J]. 电工技术学报, 2014, 29(1): 165-173.
Luo Zhanqiang, Liang Deliang. Mathematical Model and Characteristics on <br/>Dual-Redundancy Electromechanical Actuation Servo System. Transactions of China Electrotechnical Society, 2014, 29(1): 165-173.
[1] Olaf Cochoy, Susan Hanke, Udo B Carl. Concepts for position and load control for hybrid actuation in primary flight controls[J]. Aerospace Science and Technology, 2007, 11(2/3): 194-201. [2] Olaf Cochoy, Udo B Carl, Frank Thielecke. Integration and control of electromechanical and electrohydraulic actuators in a hybrid primary flight control architecture[C]. Recent Advances in Aerospace Actuation System and Components, Toulouse, France, 2007: 1-8. [3] Bossche D van d. More electric’ control surface actuation[C]. PCIM Europe Conference, Nurnberg, 2005: 31-37. [4] Cochoy O, Carl U B. Redundant hybrid actuation concept for primary flight control[C]. Mechatronik, 2005: 483-495. [5] Bossche D van d. The evolution of the airbus primary flight control actuation systems[C]. 3rd International Fluid Power Conference, Shaker, Aachen, 2002, 2: 355-366. [6] Joel R S. F218 systems research aircraft facility[R]. NASA Technical Memorandum 4433, 1992. [7] Stephen C J. Flight test experience with an electromechanical actuator on the F218 systems research aircraft[R]. NASA, 1998. [8] 汤蕴璆, 张奕黄, 范瑜. 交流电机动态分析[M]. 北京: 机械工业出版社, 2004. [9] 高景德, 王祥珩, 李发海. 交流电机及其系统的分析[M]. 北京: 清华大学出版社, 2004. [10] 周奇勋, 李声晋, 卢刚, 等. 双余度机载永磁无刷直流伺服系统转矩均衡性[J]. 电工技术学报, 2009, 24(6): 17-23. Zhou Qixun, Li Shengjin, Lu Gang, et al. Torque balance of dual-redundancy PM brushless DC servo system used in aircraft[J]. Transactions of China Electrotechnical Society, 2009, 24(6): 17-23. [11] 李榕, 刘卫国, 马瑞卿, 等. 双余度无刷直流电动机伺服系统电流均衡性研究[J]. 电工技术学报, 2005, 20(9): 77-81. Li Rong, Liu Weiguo, Ma Ruiqing, et al. Research on current balance in dual-redundancy BLDCM servo system[J]. Transactions of China Electrotechnical Society, 2005, 20(9): 77-81. [12] Ma Ruiqing, Liu Weiguo, Luo Guangzhao, et al. The balanced current control of dual-redundancy perm- anent magnetic brushless DC motor[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, 1: 475-479. [13] John D Albright, Landon A Moore. Development and implementation of electromechanical actuators for the X-38 atmospheric test vehicles[C]. AIAA Atmos- pheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, 2008: 10.251416.2008-6569. [14] Two-fault tolerant electric actuation systems for space applications[C]. 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006: 10.251416.2006-4939. [15] 贺益康. 脉宽调制型(PWM)逆变器-异步电机系统的稳态状态空间分析[J]. 电工技术学报, 1994, 9(2): 11-15. He Yikang. Pulse width modulated(PWM) inverter- asynchronous motor system steady state space analysis[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 11-15. [16] 徐国卿, 张奕黄, 郝荣泰. 逆变器供电感应电机稳态性能仿真的研究[J]. 中国电机工程学报, 1999, 19(9): 1-5. Xu Guoqing, Zhang Yihuang, Hao Rongtai. On the steady-state simulation method of inverter-fed induction motor[J]. Proceedings of the CSEE, 1999, 19(9): 1-5.