Abstract:In this paper, the spectral characteristics of the cosine window are analyzed and an improved FFT method for harmonic analysis based on the even order cosine window (EOCW) is proposed. The rectification formulae of the frequency, amplitude and phase of the fundamental and harmonics are obtained by using the least squares fitting method. Simulation results indicate that, the precision in calculating harmonic parameters can be highly improved by the proposed algorithm, no matter with the fundamental frequency varies and the presence of interharmonics. The proposed algorithm is suitable for harmonic analysis under nonstationary situations and the correctness of which is verified by the application in embedded system.
曾博, 滕召胜, 周毅波. 改进FFT非稳态电力谐波分析及应用[J]. 电工技术学报, 2012, 27(11): 256-262.
Zeng Bo, Teng Zhaosheng, Zhou Yibo. Power System Harmonic Analysis under Nonstationary Situations and Its Application Based on Improved FFT Method. Transactions of China Electrotechnical Society, 2012, 27(11): 256-262.
[1] Jun W, Huang A, Woongje S, et al. Smart grid technologies[J]. IEEE Industrial Electronics Magazine, 2009, 3(2): 16-23. [2] Al Hasawi W M, El Naggar K M. New digital filter for unbalance distorted current and voltage estimation in power systems[J]. Electric Power System Research, 2008, 78(7): 1290-1301. [3] Davis E J, Emanuel A E. Harmonic pollution metering: theoretical consideration[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 19-23. [4] Milenko B D, Željko R D. Frequency measurement of distorted signals using Fourier and zero crossing techniques[J]. Electric Power System Research, 2008, 78(8): 1407-1415. [5] Spark Y X, Simon X Y.Power system frequency estimation using supervised Gauss-Newton algorithm [J]. Measurement, 2009, 42(1): 28-37. [6] Lobos T, Rezmer J. Real-time determination of power system frequency[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(4): 877-881. [7] Dariusz B, Andrzej B. Improvement of accuracy of power system spectral analysis by coherent resampling[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 1004-1013. [8] 庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54. Pang Hao, Li Dongxia, Zu Yunxiao, et a1. An improved algorithm for harmonic analysis of power system using FFT technique[J]. Proceedings of the CSEE, 2003, 23(6): 50-54. [9] Grandke T. Interpolation algorithms for discrete Fourier transform of weighed signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355. [10] 许珉, 张鸿博. 基于Blackman-Harris窗的加窗FFT插值修正算法[J]. 郑州大学学报(工学版), 2005, 26(4): 99-101. Xu Min, Zhang Hongbo.The correction algorithm based on the Blackman-Harris windows and interpolated FFT[J]. Journal of Zhengzhou University: (Engineering Science), 2005, 26(4): 99-101. [11] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(I)窗函数研究[J]. 电工技术学报, 1994, 9(1): 50-54. Pan Wen, Qian Yushou, Zhou E. Power harmonies measurement based on windows and interpolated FFT (I) study of windows[J]. Transactions of China Electrotechnical Society, 1994, 9(1):50-54. [12] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J]. 电工技术学报, 1994, 9(2): 53-56. Pan Wen, Qian Yushou, Zhou E. Power harmonies measurement based on windows and interpolated FFT (II) dual interpolated FFT algorithms[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 53-56. [13] Belega D, Dallet D, David S. Accurate amplitude estimation of harmonic components of incoherently sampled signals in the frequency domain[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 1-9 [14] 温和, 滕召胜, 卿柏元. Hanning自卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2009, 24(2): 164-169. Wen He, Teng Zhaosheng, Qing Boyuan. Hanning self-convolution windows and its applications to harmonic analysis[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 164-169. [15] Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceeding of the IEEE, 1978, 66(1): 51-83.