Abstract:Regarding to the random attribute of the parameters of tolerance analog circuit output waveform, the feature interval vector used to describe the tolerance analog circuit in a certain mode is constructed. Accordingly, a novel soft fault diagnosis method based on waveform similarity acquired by multi-frequency tests is proposed. For each fault mode of the circuit under test, K standard feature interval vectors are acquired by K tests with alternating current signal inputs with different frequencies respectively. In order to diagnose the fault mode of the circuit, it is input with the same signals with K different frequencies to form K output wave parameter samples. K wave similarities are calculated by the K output wave parameter samples with the K standard feature interval vectors of each fault mode. The integrated similarity is the fusion of the K wave similarities considering mean square deviation weight and credibility weight. Finally, fault location is realized by a set of fuzzy rules. The simulation results show that the proposed method gains satisfactory accuracy while less limited by accessible test points. Moreover, it is practical and easy to be realized in automatic test systems.
钟建林, 何友, 任献彬. 基于波形相似度的容差模拟电路软故障诊断[J]. 电工技术学报, 2012, 27(8): 222-229.
Zhong Jianlin, He You, Ren Xianbin. Soft Fault Diagnosis Based on Waveform Similarity for Tolerance Analog Circuit. Transactions of China Electrotechnical Society, 2012, 27(8): 222-229.
[1] 杨士元, 胡梅, 王红. 模拟电路软故障诊断的研究[J]. 微电子学与计算机, 2008, 25(1): 1-8.
[2] 彭敏放, 何怡刚. 容差模拟电路的模糊软故障字典法诊断[J]. 湖南大学学报(自然科学版), 2005, 32(1): 25-28.
Peng Minfang, He Yigang. A fuzzy soft fault dictionary method for diagnosis of analog circuits with tolerance[J]. Journal of Hunan University (Natural Sciences), 2005, 32(1): 25-28.
[3] Stopjakova V, Malosek P, Micusik D, et al. Classification of defective analog integrated circuits using artificial neural networks[J]. Journal of Electronic Testing: Theory and Applications, 2004: 20(1): 25-37
[4] Wang P, Yang S. A new diagnosis approach for handling tolerance in analog and mixed- signal circuits by using fuzzy math [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2005, 52(10): 2118-2127
[5] 王安娜, 邱增, 吴洁, 等. 基于SVM多类分类算法的模拟电路软故障诊断[J]. 东北大学学报(自然科学版), 2008, 29(7): 924-927.
Wang Anna, Qiu Zeng, Wu Jie, et al. SVM-based multi-classifying algorithm for soft fault diagnosis of analog circuits[J]. Journal of Northeastern University (Natural Science), 2008, 29(7): 924-927.
[6] 彭良玉, 禹旺兵. 基于小波分析和克隆选择算法的模拟电路故障诊断[J]. 电工技术学报, 2007, 22(6): 12-16.
[7] 田玮, 凌燮亭. 基于区间线性方程组解的电路容差分析[J]. 电子学报, 1995, 23(9): 56-60
Tian Wei, Ling Xieting. Circuit worst-case tolerance analysis via solution of interval linear equations[J]. Acta Electronica sinica, 1995, 23(9): 56-60.
[8] 马彦恒, 刘林. 基于VXIbus的波形模糊识别的研究[J]. 电子科技大学学报, 2001, 30(16): 625-628.
Ma Yanheng, Liu Lin. The study of waveform fuzzy identification based on VXIbus measurement[J]. Journal of University of Electronic Science and Techonogy of China, 2001, 30(16): 625-628.
[9] Alippi C, Catelani M, Fort A, et al. Automated selection of test frequencies for fault diagnosis in analog electronic circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1033- 1044.
[10] 张玮, 沈士团, 李驿华.一种面向输出响应的多频测试故障检测与隔离方法[J]. 遥测遥控, 2003, 24(6): 43-46.
Zhang Wei, Shen Shituan, Li Yihua. Output response- oriented fault detection and isolation under multifrequency test[J]. Journal of Telemetry Trackingm and Command, 2003, 24(6): 43-46.
[11] 彭敏放, 何怡刚, 吕敬祥. 基于智能信息融合的模拟电路故障定位方法[J]. 电工技术学报, 2005, 20(11): 93-96.
[12] 钟建林, 何友, 王红星. 基于多频小波分析和D-S推理的电路故障诊断[J]. 电工技术学报, 2010, 25(8): 180-184.
Zhong Jianlin, He You, Wang Hongxing. Circuit fault diagnosis based on multi-frequency wavelet analysis and D-S reasoning[J]. Transactions of China Electrotechnical Society, 2010, 25 (8): 180-184.
[13] Aminian F, Aminian M. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor[J]. IEEE Transactions on Circuits and System II: Analog and Digital Signal Processing, 2000, 47(2): 151-156.