Multi-Objective Optimal Power Flow Considering Environmental Factor and Voltage Stability
Qiu Wei, Zhang Jianhua, Liu Nian
State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources Ministry of Education, North China Electric Power University Beijing 102206 China
Abstract:A mathematical model for multi-objective optimal power flow considering environmental factor and voltage stability is formulated. Minimizing the fuel cost, emission of atmospheric pollutants and maximizing the static voltage stability margin are considered as objective functions. Since undesirable protective relay operation plays a major role in voltage collapse, operation margin of zone 3 impedance relay constraint is included in the model. A novel two-stage approach incorporating multi-objective optimization and decision support is designed to solve the problem. At the first stage, a self-adaptive multi-objective differential evolution algorithm is proposed to obtain the Pareto front. At the second stage, fuzzy C-means algorithm is applied first to classify the Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the super-efficiency data envelopment analysis is performed, by comparing the relative efficiency of those solutions, to help the decision makers to extract the effective compromise solutions. The numerical results on IEEE 118-bus system demonstrate the reasonableness of the proposed model and effectiveness of the developed approach.
[1] Venkatesh P, Gnanadass R, Padhy N P. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints[J]. IEEE Transactions on Power Systems, 2003, 18(2): 688-697. [2] 喻洁, 黄学良, 夏安邦. 基于分区协调优化的环境经济调度策略[J]. 电工技术学报, 2010, 25(1): 129-136. Yu Jie, Huang Xueliang, Xia Anbang. Environmental economic dispatch based on sub-area coordinated optimization[J]. Transactions of China Electrote- chnical Society, 2010, 25(1): 129-136. [3] Wu L H, Wang Y N, Yuan X F, et al. Environmental/ economic power dispatch problem using multi- objective differential evolution algorithm[J]. Electric Power Systems Research, 2010, 80(9): 1171-1181. [4] Abido M A. Multiobjective particle swarm optimization for optimal power flow problem[C]. Proceedings of the 12th International Middle-East Power Systems Conference, Aswan, Egypt, 2008: 392-396. [5] Tangpatiphan K, Yokoyama A. Optimal power flow with steady-state voltage stability consideration using improved evolutionary programming[C]. Proceedings of the 2009 IEEE Bucharest Power Tech Conference, Bucharest, Romania, 2009: 1-7. [6] Kumari M S, Maheswarapu S. Enhanced genetic algorithm based computation technique multi-objective optimal power flow solution[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(6): 736-742. [7] 林伟芳, 孙华东, 汤涌, 等. 巴西“11·10”大停电事故分析及启示[J]. 电力系统自动化, 2010, 34(7): 1-5. Lin Weifang, Sun Huadong, Tang Yong, et al. Analysis and lessons of the blackout in Brazil power grid on November 10, 2009[J]. Automation of Electric Power Systems, 2010, 34(7): 1-5. [8] 李生虎. 线路距离Ⅲ段保护动作裕度的节点功率控制算法[J]. 电力系统自动化, 2006, 30(16): 27-31, 80. Li Shenghu. Power injection control to operation margin of zone 3 impedance relay on transmission lines[J]. Automation of Electric Power Systems, 2006, 30(16): 27-31, 80. [9] Ajjarapu V, Sakis Meliopoulos A P. Preventing voltage collapse with protection system that incorporate optimal reactive power control[R]. USA: Power System Engineering Research Center, 2008. [10] 公茂果, 焦李成, 杨咚咚, 等. 进化多目标优化算法研究[J]. 软件学报, 2009, 20(2): 271-289. Gong Maoguo, Jiao Licheng, Yang Dongdong, et al. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20(2): 271-289. [11] 周双喜, 朱凌志, 郭锡玖, 等. 电力系统电压稳定性及其控制[M]. 北京: 中国电力出版社, 2004. [12] 李林川, 刘娜, 顾丽梅. 考虑静态电压稳定裕度的配电系统无功补偿优化配置[J]. 电工技术学报, 2008, 23(4): 119-124, 142. Li Linchuan, Liu Na, Gu Limei. Optimal reactive power planning of radial distribution system with consideration of static voltage stability margin[J]. Transactions of China Electrotechnical Society, 2008, 23(4): 119-124, 142. [13] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [14] Abou El Ela A A, Abido M A, Spea S R. Optimal power flow using differential evolution algorithm[J]. Electric Power Systems Research, 2010, 80(7): 878-885. [15] Robič T, Filipič B. DEMO: Differential evolution for multiobjective optimization[C]. Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, Heidelberg, Springer, 2005: 520-533. [16] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657. [17] 边肇祺, 张学工. 模式识别[M]. 2版. 北京: 清华大学出版社, 2000. [18] 夏世威, 白雪峰, 陈士麟, 等. 基于模糊聚类法的暂态稳定机组分群方法[J]. 电力系统自动化, 2010, 34(2): 29-33. Xia Shiwei, Bai Xuefeng, Chen Shilin, et al. A fuzzy method for clustering generators in transient stability analysis[J]. Automation of Electric Power Systems, 2010, 34(2): 29-33. [19] 简祯富. 决策分析与管理[M]. 北京: 清华大学出版社, 2007. [20] 梁才浩. 基于新型进化算法和微机集群的电力系统并行无功优化研究[D]. 武汉: 华中科技大学, 2006. [21] Chowdhury B H, Baravc S. Creating cascading failure scenarios in interconnected power systems[C]. Proceedings of IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006: 1-8. [22] 陈为化, 江全元, 曹一家. 考虑继电保护隐性故障的电力系统连锁故障风险评估[J]. 电网技术, 2006, 30(13): 14-19, 25. Chen Weihua, Jiang Quanyuan, Cao Yijia. Risk assessment of power system cascading failure considering hidden failures of protective relayings[J]. Power System Technology, 2006, 30 (13): 14-19, 25.