Array Optimization of Wave Energy Converters by Differential Evolution Algorithm
Fang Hongwei1, Song Runan1, Feng Yuzhu1, Chen Ziwei2
1. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China; 2. State Grid Tianjin Power Maintenance Company Tianjin 300010 China
Abstract:In order to use the wave radiation and scattering to enhance the efficiency for wave energy converts arrays, the differential evolution algorithm is used to optimize the wave energy conversion device. The algorithm has the merits of strong global search ability and less computation time. However, accuracy and convergence speed of the differential evolution algorithm cannot be satisfied simultaneously. Furthermore, the algorithm may easily fall into the local solution. In order to improve the accuracy of the optimization results, the concept of adaptive mutation operator is introduced to improve the adaptability of the difference evolution algorithm. The improved algorithm has relatively faster convergence speed and higher precision. Combined with the improved algorithm, arrays with different numbers of floats are compared and analyzed. Simulation results show that larger size of the array will make greater impacts on the floats and achieve higher efficiency of wave energy converters, which verifies the validity of the optimization method for wave energy convert arrays.
[1] Leon H M R, Shoeb M A, Rahman M S, et al. Design and economic feasibility analysis of autonomous hybrid energy system for rural Bangladesh[C]//4th International Conference on the Development in the in Renewable Energy Technology (ICDRET), Dhaka, 2016: 1-6. [2] Wahid F, Sanjana T, Roy A, et al.Designing of a Pelamis wave energy converter in Matlab Simulink and studying the output characteristics with variation to electrical and mechanical parameters[C]//4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, 2017: 669-674. [3] 訚耀保. 海洋波浪能综合利用——发电原理与装置[M]. 上海: 上海科学技术出版社, 2013. [4] Yang S, Liu H, Dai C, et al.An application of virtual synchronous generator technology in wave energy[C]// OCEANS 2017-Anchorage, Anchorage, AK, 2017: 1-6. [5] Twidell J, Weir A D.Renewable energy resources[M]. 2nd Edition. London: Taylor and Francis, 2006. [6] Fang Hongwei, Wang Dan.Design of permanent magnet synchronous generators for wave power generation[J]. Transactions of Tianjin University, 2016, 22(5): 396-402. [7] Dalton G J, Alcorn R, Lewis T.Case study feasibility analysis of the Pelamis wave energy convertor in ireland, portugal and north america[J]. Renewable Energy, 2010, 35(2): 443-455. [8] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11. Xiao Xi, Bai Nianzong, Kang Qing, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11. [9] Flocard F, Finnigan T D.Experimental investigation of power capture from pitching point absorbers[C]// 8th European Wave and Tidal Energy Conference, Sweden, 2009: 400-409. [10] Elisabetta T, Matteo C, Marta M.Effect of control strategies and power take-off efficiency of the power capture from sea waves[J]. IEEE Transactions on Energy Conversation, 2011, 26(4): 1088-1098. [11] Henderson R.Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31(2): 271-283. [12] Liu C, Yu H, Liu Q, et al.Research on a double float system for direct drive wave power conversion[J]. IET Renewable Power Generation, 2017, 11(7): 1026-1032. [13] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010(14): 1-12. You Yage, Li Wei, Liu Weimin, et al.Development status and perspective of marine energy conversion systems[J]. Automation of Electric Power Systems, 2010(14): 1-12. [14] Drew B, Plummer A R, Sahinkaya M N.A review of wave energy converter technology[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(8): 887-902. [15] 张静, 余海涛, 施振川. 一种波浪发电装置用低速双动子永磁直线电机运行机理研究[J]. 电工技术学报, 2018, 33(19): 4553-4562. Zhang Jing, Yu Haitao, Shi Zhenchuan.Research on a tubular linear permanent magnet machines with dual translators for low speed wave energy conversion[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4553-4562. [16] 黄磊, 胡敏强, 余海涛, 等. 直驱式波浪发电用全超导初级励磁直线发电机的设计与分析[J]. 电工技术学报, 2015, 30(2): 80-86. Huang Lei, Hu Minqiang, Yu Haitao, et al.Design and analysis of a fully-superconducting primary- excitation linear generator for direct-driven wave energy generation[J]. Transactions of China Electro- technical Society, 2015, 30(2): 80-86. [17] 杨健, 黄磊, 仲伟波, 等. 直驱式波浪发电系统能量跟踪控制[J]. 电工技术学报, 2017, 32(增刊1): 21-29. Yang Jian, Huang Lei, Zhong Weibo, et al.The energy tracking control strategy for direct drive wave energy generation[J]. Transactions of China Electro- technical Society, 2017, 32(S1): 21-29. [18] O’Sullivan A C M, Sheng W, Lightbody G. An analysis of the potential benefits of centralised predictive control for optimal electrical power generation from wave energy arrays[J]. IEEE Transa- ctions on Sustainable Energy, 2018, 9(4): 1761-1771. [19] Nambiar A J, Forehand D, Kiprakis A, et al.Effects of spacing in wave energy converter arrays on voltage flicker[C]//5th IET International Conference on Renewable Power Generation (RPG), London, 2016: 1-6. [20] 何光宇, 杨绍辉, 何宏舟, 等. 阵列式波浪能发电装置的水动力分析[J]. 水利发电学报, 2015, 34(2): 118-124. He Guangyu, Yang Shaohui, He Hongzhou, et al.Hydrodynamic analysis of array-type device of wave energy generation[J]. Journal of Hydroelectric Engineering, 2015, 34(2): 118-124. [21] Budal K.Theory for absorption of wave power by a system of interacting bodies[J]. J. Ship Res. 1977, 21: 248-253. [22] Evans D V.Some analytic results for two and three dimensional waveenergy absorbers[C]//Power from Sea Waves, Academic Press, Inc., London, UK, 1980: 213-249. [23] Falnes J.Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves[J]. Appl. Ocean Res. 1980, 2: 75-80. [24] Ohkusu M.Hydrodynamic forces on multiple cylinders in waves. in: proceedings of the inter- national symposium on dynamics of marine vehicles and structures in waves[C]//Institute of Mechanical Engineers, London, 1974: 107-112. [25] Mavrakos S A, Kalofonos A.Power absorption by arrays of interacting vertical axisymmetric wave- energy devices[J]. J. Offshore Mech. Arct. Eng. 1997, 119: 244-250. [26] Kagemoto H, Yue D K P. Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method[J]. J. Fluid Mech. 1986, 166: 189-209. [27] Yilmaz O.Hydrodynamic interactions of waves with group of truncated vertical cylinders[J]. J. Waterw. Port Coast. Ocean Eng. 1998, 124: 272-279. [28] Yilmaz O, Incecik A.Analytical solutions of the diffraction problem of a group of truncated vertical cylinders[J]. Ocean Eng. 1998, 25: 385-394. [29] Garrett C J R. Wave forces on a circular dock[J]. J. Fluid Mech. 1971, 46: 129-139. [30] Child B F M, Venugopal V. Optimal configurations of wave energy device arrays[J]. Ocean Engineering, 2010, 37(16): 1402-1417. [31] Bozzi S, Bizzozero F, Gruosso G, et al.Analysis of interaction of point absorbers' arrays for seawave electrical energy generation in italian seas[C]//2016 International Symposium on Power Electronics, Elec- trical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016: 1369-1374. [32] 王东. 组合型振荡浮子布置的优化研究[D]. 青岛: 中国海洋大学, 2015. [33] 方红伟, 陈雅, 胡孝利. 波浪发电系统及其控制[J]. 沈阳大学学报(自然科学版), 2015, 27(5): 376-384. Fang Hongwei, Chen Ya, Hu Xiaoli.Wave power generation and its control[J]. Journal of Shenyang University (Natural Science), 2015, 27(5): 376-384. [34] 方红伟, 程佳佳, 任永琴. 浮子式波浪能转换装置的浮子浮力受力分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(5): 446-451. Fang Hongwei, Cheng Jiajia, Ren Yongqin.Force analysis of float-type wave energy converter[J]. Journal of Tianjin University (Science and Techno- logy), 2014, 47(5): 446-451. [35] Child B F M. On the configuration of arrays of floating wave energy converters[D]. Edinburgh, UK: Edinburgh University, 2011. [36] 刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721-729. Liu Bo, Wang Ling, Jin Yihui.Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729. [37] 秦善强, 付志红, 朱学贵, 等. 遗传神经网络的瞬变电磁视电阻率求解算法[J]. 电工技术学报, 2017, 32(12): 146-154, 250. Qin Shanqiang, Fu Zhihong, Zhu Xuegui, et al.Genetic neural network for apparent resistivity solution of transient electromagnetic[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 146-154, 250. [38] 苏玉刚, 陈龙, 吴学颖, 等. 基于遗传算法的SS型磁耦合WPT系统负载与互感识别方法[J]. 电工技术学报, 2018, 33(18): 4199-4206. Su Yugang, Chen Long, Wu Xueying, et al.Load and mutual inductance identification method of SS-type magnetically-coupled WPT system based on genetic algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4199-4206. [39] 褚会敏. 基于模块组合多电平变换器的阵列式波浪发电控制[D]. 天津: 天津大学, 2014.