Abstract:A novel ridgelet network approach for diagnosing faults of analog circuits is proposed. This systematic approach is performed in such way that utilizing wavelet fractal analysis, PCA and data normalization preprocess the fault response signals and using ridgelet network classifies the faulty components. Meanwhile, the PCA method is used for selecting the reasonable numbers of ridgelet units of hidden layer of related networks. The simulation results show that the proposed diagnostic system can perform analog fault diagnosis effectively, and can diagnose not only the single faults and but also the multiple faults effectively.
肖迎群, 何怡刚. 基于小波分形分析和脊波网络的模拟电路故障诊断方法[J]. 电工技术学报, 2011, 26(11): 105-114.
Xiao Yingqun, He Yigang. A Fault Diagnosis Approach for Analog Circuits Based on Wavelet Fractal Analysis and Ridgelet Network. Transactions of China Electrotechnical Society, 2011, 26(11): 105-114.
[1] Bandler J W, Salama A E. Fault diagnostic of analog circuits[J]. Proceedings of the. IEEE, 1985, 73(8): 1279-1325. [2] Spina R, Upadhyaya S. Linear circuit fault diagnosis using neuromorphic analyzers[J]. IEEE Transactions. on Circuits and Systems II, 1997, 44(3): 188-196. [3] Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor[J]. IEEE Transactions on Circuits and Systems II, 2000, 47(2): 151-156. [4] Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions. on Instrument Measurement, 2002, 51(3): 544-550. [5] He Y, Tan Y, Sun Y. Wavelet neural network approach for fault diagnosis of analog circuits[J]. IEE Proceedings-Circuits, Devices, System, 2004, 151(4): 379-384. [6] 肖迎群, 何怡刚. 基于脊波网络的模拟电路故障诊断[J]. 电工技术学报, 2010, 25(6): 155-162. [7] Tan Y, He Y, Cui C, et al. A novel method for analog fault diagnosis based on neural networks and genetic algorithms[J]. IEEE Transactions. on Instrument. Measurement, 2008, 57(11): 2631-2639. [8] Yuan Lifen, He Yigang, Huang Jiaoying, et al. A new neural-network-based fault diagnosis approach for analog circuits by using Kurtosis and entropy as a preprocessor[J]. IEEE Transactions. on Instrument Measurement, 2010, 59(3): 586-595. [9] Candes E. Ridgelets: theory and applications[D]. California: Stanford University, 1998. [10] Cande’s E J, Donoho D L. Ridgelets: a key to higher- dimensional intermittency[J]. Philos. Trans. R. Soc. Lond. A., 1999, 35(17): 2495-2509. [11] Donoho D L. Orthonormal ridgelets and linear singularities[J]. SIMA J. Math. Anal., 2000, 31(5): 1062-1099. [12] Candes E J. Ridgelets and the representation of mutilated sobolev functions[J]. SIAM. Math. Anal., 1999, 33(2): 2495-2509. [13] Yang S, Wang M, Jiao L. Ridgelet kernel regression[J]. Neurocomputing, 2007, 70(16): 3046-3055. [14] Do M N, Vetterli M. The finite ridgelet transform for image representation[J]. IEEE Transactions. on Image Process, 2003, 12(1): 16-28. [15] Strang G, Nguyen T. Wavelet and filter banks[M]. Cambridge, MA: Wellesley-Cambridge Press, 1996. [16] Falconer J. Fractal geometry-mathematical foundations and applications[M]. West Sussex: John Wiley and Sons, 2003. [17] Kartz M. Fractals and the analysis of waveforms[J]. Comput. Biol. Med., 1988, 18(3): 145-156. [18] Rosana Esteller, George Vachtsevanos, Javier Echauz, et al. A comparison of waveform fractal dimension algorithms[J]. IEEE Transactions on Circuitd and Systems-Ⅰ: Fundamental Theory and Applications, 2001, 48(2): 177-183. [19] Raghavendra B S, Narayana Dutt D. A note on fractal dimensions of biomedical waveforms[J]. Comput. Biol. Med., 2009, 39(9): 1006-1012. [20] Bishop C M. Neural networks for pattern recognition[M]. New York: Oxford University Press, 1995. [21] Fogel D B. An information criterion for optimal neural network selection[J]. IEEE Transactions. on Neural Networks, 1991, 2(5): 490-497. [22] Murata N, Yoshizawa S, Shun Ichi Amari. Network information criterion-determine the number of hidden units for an artificial neural network model[J]. IEEE Transactions. on Neural Networks, 1994, 5(6): 865- 871. [23] Peter D Grünwald. The minimum description length principle[M]. Cambridge, MA: MIT Press, 2007. [24] Yong R Park, Thomas J Murray, Chung Chen. Predicting sun spots using a layered perceptron neural network[J]. IEEE Transactions. on Neural Networks, 1996, 7(2): 501-505.