Probabilistic Supply-Demand Balance Analysis for Power Systems Considering Stochastic Chronological Fluctuations in Generation and Load
Zhao Pengfei1, Mao Zhihang1, Liu Dong2, Guo Guodong1, Sun Yingyun1
1. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China;
2. State Grid Economic and Technological Research Institute Co., Ltd. Beijing 102209 China
With the increasing penetration of renewable energy and the continuous expansion of flexible loads, the uncertainty on both supply and demand sides pose growing challenges to maintaining power balance in power systems. Insufficient regulation capability has become a critical bottleneck for renewable energy accommodation and secure power supply. To effectively address the impact of uncertainties in renewable generation and load demand, this paper proposed a data-driven probabilistic supply-demand balance analysis method from the perspective of the overall power curve. Instead of characterizing uncertainty only at a single time slice or by local ramping indices between adjacent periods, the method treats the full scheduling horizon as an integrated trajectory.
Firstly, a time-series probabilistic modeling framework is developed for both regulation demand and regulation capacity over the entire scheduling horizon. Specifically, renewable generation and load demand across the horizon are represented through a joint probability distribution that captures stochastic chronological fluctuations, including temporal and spatial correlations. Based on this joint distribution, the net load time-series random vector is introduced as a unified representation of the power system's regulation demand, enabling the analysis to preserve both randomness and intertemporal structure of the power curve. Furthermore, the paper emphasizes that the regulation capacity of power systems is fundamentally constrained by the time-coupling characteristics of regulation resources, rather than by isolated per-period adjustable intervals. By defining the full-cycle feasible operating region of regulation resources, such as thermal units and energy storage, time-coupling constraints and system-level supply-demand balancing constraints are introduced to comprehensively characterize the overall regulation capacity of the power system over the entire scheduling horizon.
Secondly, a probabilistic supply-demand balance criterion for chronological power balance at a given confidence level is proposed. The system is considered adequate if the probability of maintaining feasibility (i.e., the existence of a valid resource trajectory satisfying all constraints) meets the required confidence. On this basis, a data-driven probabilistic supply-demand balance analysis method is developed within an iterative optimization framework that alternates between representative-scenario optimization and massive-scenario verification. A stochastic security-constrained unit commitment (SCUC) problem is solved on a reduced set of representative scenarios to obtain feasible and economical day-ahead commitment decisions. Then, a massive generated scenario set is used to assess loss-of-load risk due to supply-demand imbalances. To improve coverage of these extreme but impactful scenarios, a scenario update mechanism based on loss-of-load distribution quantiles is introduced to achieve adaptive expansion of the representative scenario set. Through iterative optimization, the method accurately captures tail-risk scenarios and enhances the regulation capability of the power system.
Finally, case studies validate the proposed method on a modified six-bus system with wind, photovoltaic generation, and battery storage. Results show that, compared with a deterministic expected-value model and a conventional stochastic SCUC that considers only a few typical scenarios, the proposed approach substantially improves adaptability to small-probability tail-risk net load trajectories with only a modest increase in operating cost. Notably, the estimated supply-demand balance probability is increased to 0.955, demonstrating the method’s effectiveness as a practical tool for probabilistic supply-demand balance analysis in power systems.
赵鹏飞, 毛志航, 刘栋, 郭国栋, 孙英云. 考虑源荷随机时序波动的电力系统概率化供需平衡分析方法[J]. 电工技术学报, 0, (): 19-.
Zhao Pengfei, Mao Zhihang, Liu Dong, Guo Guodong, Sun Yingyun. Probabilistic Supply-Demand Balance Analysis for Power Systems Considering Stochastic Chronological Fluctuations in Generation and Load. Transactions of China Electrotechnical Society, 0, (): 19-.
[1] 国家发展改革委, 国家能源局, 国家数据局. 加快构建新型电力系统行动方案(2024—2027年)[EB/OL]. (2024-07-25)[2025-11-23]. https://www.go v.cn/zhengce/zhengceku/202408/P020240806793811358886.pdf.
[2] 习近平. 践诺笃行共同书写全球气候治理新篇章——在联合国气候变化峰会上的致辞[EB/OL]. (2025-09-24)[2025-11-23]. https://www.news.cn/202 50925/c03a371cd974472c840b37d0bf18a715/c.html.
[3] 袁铁江, 张文达. 新型电力系统源-储-荷协同规划研究综述[J]. 中国电机工程学报, 2025, 45(17): 6664-6683.
Yuan Tiejiang, Zhang Wenda.A review of research on source-storage-load coordinated planning for new power system[J]. Proceedings of the CSEE, 2025, 45(17): 6664-6683.
[4] 许涛, 王国春, 董昱, 等. 新型电力系统平衡机理及演进过程研究[J]. 中国电机工程学报, 2025, 45(01): 1-14.
Xu Tao, Wang Guochun, Dong Yu, et al.A review of research on source-storage-load coordinated planning for new power system[J]. Proceedings of the CSEE, 2025, 45(01): 1-14.
[5] 国家发展改革委, 国家能源局. 电力系统调节能力优化专项行动实施方案(2025—2027年)[EB/OL]. (2024-12-20)[2025-11-23]. https://www.gov.cn/zhen gce/zhengceku/202501/P020250107354501317913.pdf.
[6] Adams J, O’malley M, Hanson K.Flexibility requirements and potential metrics for variable generation: Implications for system planning studies[J]. Princeton, NJ: NERC, 2010: 14-17.
[7] 马英浩, 刘琛, 谢开贵, 等. 电力系统网络传输灵活性及其评价综述[J]. 中国电机工程学报, 2023, 43(14): 5429-5441.
Ma Yinghao, Liu Chen, Xie Kaigui, et al.Review on network transmission flexibility of power system and its evaluation[J]. Proceedings of the CSEE, 2023, 43(14): 5429-5441.
[8] Mohandes B, El Moursi M S, Hatziargyriou N, et al. A review of power system flexibility with high penetration of renewables[J]. IEEE Transactions on Power Systems, 2019, 34(4): 3140-3155.
[9] 孙大雁, 耿建, 杨胜春, 等. 新型电力系统环境下煤电与新能源等多元资源协调优化运行及其挑战[J]. 电网技术, 2024, 48(08): 3105-3113.
Sun Dayan, GENG Jian, YANG Shengchun, et al.Challenges of coordinated and optimized operation of coal power and new energy and other diversified resources in the new power system[J]. Power System Technology, 2024, 48(08): 3105-3113.
[10] 林弋莎, 鲁宗相, 乔颖, 等. 基于可调资源可行域模型的时序-概率电力电量平衡理论[J]. 电力系统自动化, 2025, 49(9): 61-72.
Lin Yisha, Lu Zongxiang, Qiao Ying, et al.Time-series-probabilistic power and energy balancing theory based on feasible region model of adjustable resources[J]. Automation of Electric Power Systems, 2025, 49(9): 61-72.
[11] 杨修宇, 樊泽焜, 严干贵, 等. 计及调节能力薄弱环节识别的储-输联合规划方法[J/OL]. 电工技术学报, 2025: 1-15. (2025-11-23). https://doi.org/10.19 595/j.cnki.1000-6753.tces.251194.
Yang Xiuyu, Fan Zekun, Yan Gangui, et al. Joint storage-transmission planning method considering identification of weak links in regulation capacity[J]. Transactions of China Electrotechnical Society, 2025: 1-15. (2025-11-23). https://doi.org/10.19595/j.cnki.1000-6753.tces.251194.
[12] 赵晶晶, 朱炯达, 李振坤, 等. 考虑灵活性供需鲁棒平衡的两阶段配电网日内分布式优化调度[J]. 电力系统自动化, 2022, 46(16): 61-71.
Zhao Jingjing, Zhu Jiongda, Li Zhenkun, et al.Two-stage intraday distributed optimal dispatch for distribution network considering robust balance between flexibility supply and demand[J]. Automation of Electric Power Systems, 2022, 46(16): 61-71.
[13] Meng Qinglin, He Ying, Sheharyar Hussain, et al.Optimized energy storage configuration for enhanced flexibility in renewable-integrated power systems[J]. Journal of Energy Storage, 2025, 132: 117735.
[14] 吕婉煜, 赵红生, 韩应生, 等. 供需不确定性下抽水蓄能提升系统灵活性的分层优化调度[J]. 电工技术学报, 2025, 40(21): 6984-6999.
Lü Wanyu, Zhao Hongsheng, Han Yingsheng, et al.Hierarchical optimal scheduling for pumped storage to enhance system flexibility under supply-demand uncertainty[J]. Transactions of China Electrotechnical Society, 2025, 40(21): 6984-6999.
[15] Lu, Zongxiang, Haibo Li, and Ying Qiao. Probabilistic flexibility evaluation for power system planning considering its association with renewable power curtailment[J]. IEEE Transactions on Power systems, 2018, 33(3): 3285-3295.
[16] 曹鹏, 邓长虹, 张小卉, 等. 分时段变目标的火电机组实时协调优化调度策略[J]. 电网技术, 2025, 49(6): 2398-2406.
Cao Peng, Deng Changhong, Zhang Xiaohui, et al.Real-time coordinated optimal scheduling strategy for thermal power units with adaptive time division and variable objective[J]. Power System Technology, 2025, 49(6): 2398-2406.
[17] 童宇轩, 胡俊杰, 刘雪涛, 等. 新能源电力系统灵活性供需量化及分布鲁棒优化调度[J]. 电力系统自动化, 2023, 47(15): 80-90.
Tong Yuxuan, Hu Junjie, Liu Xuetao, et al.Quantification of flexibility supply and demand and distributionally robust optimal dispatch of renewable energy dominated power systems[J]. Automation of Electric Power Systems, 2023, 47(15): 80-90.
[18] Awadalla M, Bouffard F.Flexibility characterization of sustainable power systems in demand space: A data-driven inverse optimization approach[J]. IEEE Transactions on Power Systems, 2024, 39(5): 6196-6209.
[19] 何光宇, 肖居承, 范帅, 等. 适应新型电力系统的电力互替品市场——(二)商品形态及形成机理[J]. 电力系统自动化, 2024, 48(19): 28-39.
He Guangyu, Xiao Jucheng, Fan Shuai, et al.Substitute power product market suitable for new power system—Part two product form and its formation mechanism[J]. Automation of Electric Power Systems, 2024, 48(19): 28-39.
[20] 肖居承, 范帅, 黄任可, 等. 适应新型电力系统的电力互替品市场——(四)交易模式及经济性分析[J]. 电力系统自动化, 2025, 49(6): 56-65.
Xiao Jucheng, Fan Shuai, Huang Renke, et al.Substitute power product market suitable for new power system—Part four transaction modes and economic analysis[J]. Automation of Electric Power Systems, 2025, 49(6): 56-65.
[21] 张海波, 胡玉康, 李正荣, 等. 负荷高密度地区中计及灵活性不足风险的储能优化配置[J]. 电网技术, 2023, 47(12): 4926-4940.
Zhang Haibo, Hu Yukang, Li Zhengrong, et al.Optimal configuration of energy storage considering the risk of insufficient flexibility in high load density areas[J]. Power System Technology, 2023, 47(12): 4926-4940.
[22] Hou Qingchu, Du Ershun, Zhang Ning, et al.Impact of high renewable penetration on the power system operation mode: A data-driven approach[J]. IEEE Transactions on Power Systems, 2019, 35(1): 731-741.
[23] 国家能源局. 全国累计发电装机容量同比增长17.5%[EB/OL]. (2025-10-31)[2025-11-23]. https://w ww.nea.gov.cn/20251031/f0b3d7b682d24702a4e262a6172aab1e/c.html.
[24] EPRI HEAD. Duck curve now looks like a canyon[EB/OL]. (2023-04-27)[2025-11-01]. https://www.powermag.com/epri-head-duck-curve-now-looks-like-a-canyon/.
[25] 黎博, 杜尔顺, 蔡兆丰. 计及电力气象的“源-网-荷”影响评估与电力系统规划方法综述[J]. 中国电机工程学报, 2025: 1-23. (2025-11-23).
Li Bo, Du Ershun, Cai Zhaofeng, et al. A review of power system planning method and impact assessment of ‘source-grid-load’ integrating electric meteorology[J]. Proceedings of the CSEE, 2025: 1-23. (2025-11-23). https://link.cnki.net/urlid/1 1.2107.tm.20250517.1634.004.
[26] Chen Y, Wang Y, Kirschen D, et al.Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3265-3275.
[27] 李虹, 韩雨萌. 计及新能源不确定性的配电网-多微电网协同优化调度[J]. 电工技术学报, 2025, 40(17): 5571-5588.
Li Hong Han Yumeng. Coordinated optimization scheduling of distribution networks and multiple microgrids considering the uncertainty of new energy[J]. Transactions of China Electrotechnical Society, 2025, 40(17): 5571-5588.
[28] Sun Y, Zhong J, Li Z, et al.Stochastic scheduling of battery-based energy storage transportation system with the penetration of wind power[J]. IEEE Transactions on Sustainable Energy, 2016, 8(1): 135-144.
[29] Yeganefar A, Amin-Naseri M R, Sheikh-El-Eslami M K. Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources[J]. Applied Energy, 2020, 272: 115224.
[30] 孔宇, 张恒旭, 施啸寒, 等. 基于多时间尺度分层协同的电力系统开放式推演框架[J]. 电工技术学报, 2025, 40(07): 2063-2077.
Kong Yu, Zhang Hengxu, Shi Xiaohan, et al.Open evolution simulation framework for power system based on multi-time scale hierarchical coordination[J]. Transactions of China Electrotechnical Society, 2025, 40(07): 2063-2077.
[31] 程曹阳, 杨知方, 余娟, 等. 面向全场景安全的储能投资高效规划方法[J].电工技术学报, 2025, 40(01): 64-79.
Cheng Caoyang, Yang Zhifang, Yu Juan, et al.An efficient method for energy storage planning considering full-scenario security[J]. Transactions of China Electrotechnical Society, 2025, 40(01): 64-79.
[32] Zhao Pengfei, Xu Xinzhi, Dong Xiaochong, et al.An adaptive decision-making approach for transmission expansion planning considering risk assessment of renewable energy extreme scenarios[J]. IET Generation, Transmission & Distribution, 2023, 17(18): 4107-4118.
[33] IIT. Index of data illinois institute of technology[EB/OL]. (2016). http://motor.ece.iit.edu/data/.
[34] 董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40(17): 5527-5536.
Ding Xiaochong, Sun Yingyun, Pu Tianjiao.Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40(17): 5527-5536.
[35] Dong Xiaochong, Sun Yingyun, Malik S M, et al.Scenario reduction network based on Wasserstein distance with regularization[J]. IEEE Transactions on Power Systems, 2023, 39(1): 4-13.
[36] Dong Xiaochong, Sun Yingyun, Zhang Xuemin, et al. Wind power forecasting based on multi-task learning with shared latent space mapping[J/OL]. CSEE Journal of Power and Energy Systems, 2025. 1-10. (2025-11-23). DOI:10.17775/CSEEJPES.2024.07000.