| [1] 陈艳波, 田昊欣, 刘宇翔, 等. 计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J]. 中国电机工程学报, 2025, 45(5): 1752-1766.
Chen Yanbo, Tian Haoxin, Liu Yuxiang, et al.Robust optimization configuration of photovoltaic-storage-charging integrated system in expressway service area considering demand response of electric vehicles[J]. Proceedings of the CSEE, 2025,45(5):1752-1766.
[2] 师瑞峰, 蔺泳琪, 张凌志, 等. 压缩储能与氢能驱动的虚拟电厂源-储-荷低碳经济调度[J/OL]. 电工技术学报. (2025-07-25)[2025-12-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.250803.
Shi Ruifeng, Lin Yongqi, Zhang Lingzhi, et al. Compressed storage and hydrogen-driven virtual power plant: low carbon economic dispatch of generation-storage-load[J/OL]. Transactions of China Electrotechnical Society. (2025-07-25)[2025-12-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.250803.
[3] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363.
Guo Yi, Ming Bo, Huang Qiang, et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2350-2363.
[4] 侯心宇, 苗世洪, 王廷涛, 等. 大容量先进绝热压缩空气储能系统动态建模及特性分析[J/OL]. 电工技术学报. (2025-09-24)[2025-12-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.242058.
Hou Xinyu, Miao Shihong, Wang Tingtao, et al. Dynamic modelling and characterization of large capacity advanced adiabatic compressed air energy storage system[J/OL]. Transactions of China Electrotechnical Society. (2025-09-24)[2025-12-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.242058.
[5] 国家发展改革委, 国家能源局. 关于印发《电力系统调节能力优化专项行动实施方案(2025—2027年)》的通知[EB/OL]. (2024-12-20)[2025-12-24]. https://www.gov.cn/zhengce/zhengceku/202501/content_6996643.htm.
[6] 高帆, 包道日娜, 赵明智, 等. 多场景规划下混合储能对风光耦合出力波动的平抑特性[J]. 电工技术学报, 2025, 40(9): 2827-2839.
Gao Fan, Bao Daorina, Zhao Mingzhi, et al.Smoothing method of wind-solar coupled output fluctuations by hybrid energy storage under multi-scenario planning[J]. Transactions of China Electrotechnical Society, 2025, 40(9): 2827-2839.
[7] 冯艺萱, 边晓燕, 陈雯, 等. 新型电力系统灵活性资源成本回收机制分析及挑战[J]. 电工技术学报, 2025, 40(21): 7013-7028.
Feng Yixuan, Bian Xiaoyan, Chen Wen, et al.Analysis and challenges of new power system flexibility resource cost recovery mechanisms[J]. Transactions of China Electrotechnical Society, 2025, 40(21): 7013-7028.
[8] 张智, 霍超, 郭尊, 等. 新型电力系统下抽水蓄能集群规划与运营关键问题综述及研究展望[J]. 中国电机工程学报, 2025, 45(15): 5810-5832.
Zhang Zhi, Huo Chao, Guo Zun, et al.Overview and research prospects of key issues in pumped storage cluster planning and operation under the new type power systems[J]. Proceedings of the CSEE, 2025, 45(15): 5810-5832.
[9] 刘欣雨, 罗彬, 陈永灿, 等. 融合改造的梯级混合式抽蓄短期调峰优化模型[J]. 电网技术, 2025, 49(3): 1217-1226.
Liu Xinyu, Luo Bin, Chen Yongcan, et al.Short-term peak shaving model of cascade hybrid pumped storage retrofitted from conventional hydropower[J]. Power System Technology, 2025, 49(3): 1217-1226.
[10] Tan Qiaofeng, Nie Zhuang, Wen Xin, et al.Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations[J]. Applied Energy, 2024, 355: 122250.
[11] 冯晨, 常高松, 陶湘明, 等. 含混合式抽水蓄能电站的水光蓄日内互补运行研究[J]. 水电能源科学, 2024, 42(8): 173-177.
Feng Chen, Chang Gaosong, Tao Xiangming, et al.Short-term complementary operation of hydro photovoltaic mixed pumped storage integrated power system[J]. Water Resources and Power, 2024, 42(8): 173-177.
[12] Zhang Juntao, Cheng Chuntian, Yu Shen, et al.Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: a case study in China[J]. Energy, 2022, 260: 125163.
[13] Tică E I, Popa B, Popa R.Annual performance estimation of a multireservoir system including a pumped storage plant for the mean hydrological year[J]. Journal of Energy Engineering, 2017, 143(6): 04017058.
[14] Ak M, Kentel E, Savasaneril S.Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system[J]. Renewable Energy, 2019, 139: 739-752.
[15] 郑开云, 池捷成, 张学锋. 耦合抽水蓄能的压缩空气储能电站概念研究[J]. 南方能源建设, 2023, 10(2): 18-25.
Zheng Kaiyu, Chi Jiecheng, Zhang Xuefeng.Concept research of compressed air energy storage power plant coupled with pumped hydro storage[J]. Southern Energy Construction, 2023, 10(2): 18-25.
[16] Zhang Zhi, Chen Yanbo, Ma Tianyang, et al.Multi-type energy storage expansion planning: a review for high-penetration renewable energy integration[J]. Renewable and Sustainable Energy Reviews, 2025, 219: 115853.
[17] 丁紫玉, 方国华, 毛莺池, 等. 考虑发电与弃水风险的梯级水电站水库风险调度模型[J]. 水资源保护, 2024, 40(2): 100-106+149.
Ding Ziyu, Fang Guohua, Mao Yingchi, et al.Risk dispatching model of cascade hydropower station reservoirs considering power generation and water
18 abandonment risks[J]. Water Resources Protection, 2024, 40(2): 100-106+149.
[18] 姚尔人, 席光, 王焕然, 等. 一种新型压缩空气与抽水复合储能系统的热力学分析[J]. 西安交通大学学报, 2018, 52(3): 12-18.
Yao Erren, Xi Guang, Wang Huanran, et al.Thermodynamic analysis on a novel compressed-air based pumped hydro energy storage system[J]. Journal of Xi’An Jiaotong University, 2018, 52(3): 12-18.
[19] Kim Y M, Shin D G, Favrat D.Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis[J]. Energy, 2011, 36(10): 6220-6233.
[20] Wang Huanran, Wang Liqin, Wang Xinbing, et al.A novel pumped hydro combined with compressed air energy storage system[J]. Energies, 2013, 6(3): 1554-1567.
[21] Lakshmiprabha K E, Kumar U A, Pathak P, et al.Efficiency and economic assessment of wind turbine-powered pumped hydro-compressed air storage coupled with alkaline fuel cell using hybrid approach[J]. Clean Technologies and Environmental Policy, 2024, 26(12): 4255-4272.
[22] Ge Gangqiang, Wang Huanran, Li Ruixiong, et al.A reliable operation strategy on the compressed-air-regulates-pressure underground pumped storage system and its thermo-economic investigation[J]. Journal of Energy Storage, 2023, 74: 109295.
[23] Chen Hao, Wang Huanran, Li Ruixiong, et al.Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system[J]. Energy, 2022, 249: 123607.
[24] Yao Eeren, Zhong Like, Zhang Yuan, et al.Comprehensive performance exploration of a novel pumped-hydro based compressed air energy storage system with high energy storage density[J]. Journal of Renewable and Sustainable Energy, 2022, 14(6): 064102.
[25] Cao Ruifeng, Li Weiqiang, Wang Sicheng, et al.Comprehensive comparative study of two novel isobaric adiabatic compressed air energy storage systems coupled with pumped hydro storage[J]. Applied Thermal Engineering, 2024, 257: 124318.
[26] Mozayeni H, Wang X, Negnevitsky M, et al.Study of effect of heat transfer in an air storage vessel on performance of a pumped hydro compressed air energy storage system[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119119.
[27] Camargos T P L, Pottie D L F, Ferreira R A M, et al. Experimental study of a PH-CAES system: proof of concept[J]. Energy, 2018, 165: 630-638.
[28] Lakshmiprabha K E, Kumar U A, Pathak P, et al.Efficiency and economic assessment of wind turbine-powered pumped hydro-compressed air storage coupled with alkaline fuel cell using hybrid approach[J]. Clean Technologies and Environmental Policy, 2024, 26(12): 4255-4272.
[29] 严凯, 侯付彬, 刘明明, 等. 恒压型抽水压缩空气储能系统的热力学及经济学多目标优化[J]. 工程热物理学报, 2020, 41(1): 135-140.
Yan Kai, Hou Fubin, Liu Mingming, et al.Multi-objective optimization on thermodynamics and economics of a constant-pressure pumped hydro combined with compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(1): 135-140.
[30] Chen Hao, Wang Huanran, Li Ruixiong, et al.Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system[J]. Energy, 2023, 280: 128134.
[31] 蒋志容, 侯彦硕, 丁平, 等. 水电洞室压缩空气储能地下储气库可行性分析[J]. 四川水力发电, 2023, 42(S1): 22-28, 35.
Jiang Zhirong, Hou Yanshuo, Ding Ping, et al.Feasibility analysis of under ground gas storage for compressed air energy storage in hydropower caverns[J]. Sichuan Hydropower, 2023, 42(S1): 22-28, 35.
[32] 郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377.
Guo Huan, Xu Yujie, Zhang Xinjing, et al.Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377.
[33] Zhang Na, Cai Ruixian.Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J]. Energy Conversion and Management, 2002.
[34] Yan Mengdi, Liu Changchun, Ling Haoshu, et al.Off-design performance of variable-speed compressed air energy storage system under different operation schemes[J]. Energy, 2025, 338: 138626.
[35] Barbour E, Mignard D, Ding Yulong, et al.Adiabatic compressed air energy storage with packed bed thermal energy storage[J]. Applied Energy, 2015, 155: 804-815.
[36] Yang Kun, Chen Hao, Liu Wei.Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system[J]. International Journal of Heat and Mass Transfer, 2017, 115: 657-662.
[37] Liu Shaolin, Ahmadi-Senichault A, Pozzobon V, et al.Multi-scale investigation of heat and momentum transfer in packed-bed TES systems up to 800 K[J]. Applied Energy, 2024, 366: 123285.
[38] Nemec D, Levec J.Flow through packed bed reactors: 1. single-phase flow[J]. Chemical Engineering Science, 2005, 60(24): 6947-6957.
[39] Samira S.A model of transient heat transfer in a packed bed of alumina particles[D]. New York: CUNY City College, 2013.
[40] Pottie D L F, Ferreira R A M, Maia T A C, et al. An alternative sequence of operation for pumped-hydro compressed air energy storage (PH-CAES) systems[J]. Energy, 2020, 191: 116472.
[41] Razmi A, Soltani M, Aghanajafi C, et al.Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES)[J]. Energy Conversion and Management, 2019, 187: 262-273.
[42] 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301.
Zhang Weiling, Gu Han, Zhang Chao, et al.Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301.
[43] Hunter C A, Penev M M, Reznicek E P, et al.Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids[J]. Joule, 2021, 5(8): 2077-2101.
[44] 国家能源局华中监管局, 国家能源局四川监管办公室. 关于印发《川渝一体化电力调峰辅助服务市场运营规则》的通知[EB/OL]. (2024-08-16)[2025-12-24]. https://hzj.nea.gov.cn/xxgk/zcfg/202410/t20241012_270662.html.
[45] 国家发展改革委. 关于进一步完善抽水蓄能价格形成机制的意见[EB/OL]. (2021-05-07)[2025-12-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202105/t20210507_1279341.html.
[46] 赵晋泉, 唐成魁, 陈涛, 等. 基于顺序出清的惯量和一次调频辅助服务市场机制[J/OL]. 电力系统自动化, (2025-11-05)[2025-12-24]. https://link.cnki.net/urlid/32.1180.TP.20251105.1405.002.
Zhao Jinquan, Tang Chengkui, Chen Tao, et al. Sequential clearing based ancillary service market mechanism of inertia and primary frequency regulation[J/OL]. Automation of Electric Power Systems, (2025-11-05)[2025-12-24]. https://link.cnki.net/urlid/32.1180.TP.20251105.1405.002.
[47] 生态环境部. 可再生能源并网发电方法学[EB/OL]. (2016-03-03)[2025-12-24]. https://cdm.ccchina.org.cn/archiver/cdmcn/UpFile/Files/Default/20160303093516686376.pdf.
[48] 全国温室气体自愿减排交易系统[EB/OL]. (2025-03-22][2025-12-24]. https://www.ccer.com.cn/wcm/ccer/html/2502sjcx/index.html.
[49] 水电水利规划设计总院. 中国可再生能源工程造价管理报告2024年度[R]. 北京: 水电水利规划设计总院, 2025.https://www.eesia.cn/upload/files/2025/5/2fea84d6414c788d.pdf.
[50] 杨宇轩, 周明, 郭尊, 等. 双馈式变速抽蓄机组对新型电力系统多维支撑能力量化方法[J]. 电网技术, 2025, 49(8): 3116-3127.
Yang Yuxuan, Zhou Ming, Guo Zun, et al.Quantifying multi-dimensional support capabilities of variable-speed pumped storage for new-type power system. Power System Technology[J]. 2025, 49(8): 3116-3127. |