| [1] 马敬轩,赖铱麟,吕娜伟,等.锂离子电池智能传感监测及预警技术[J].电工技术学报,2025,40(03):941-963.
Ma Jingxuan, Lai Yilin, Lv Nawei, et al.Intelligent sensing monitoring and early warning technology for lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 941-963.
[2] 李卓昊, 石琼林, 等. 锂离子电池健康状态估计方法研究现状与展望[J]. 电力系统自动化, 2024, 20: 109-129. Li Zhuohao, Shi Qionglin, et al. Research status and outlook on health state estimation methods for lithium-ion batteries[J]. Electric Power Systems Automation, 2024, 20: 109-129. Wang Y, Lai X, Chen Q, et al. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries[J]. Energy Storage Materials, 2024, 69: 103430.
[3] 郭飞,雍培,刘欣宇,等.考虑状态相依老化特性的电池储能参与调峰投资效益评估[J].电工技术学报,2025,40(13):4330-4342.
Guo Fei, Yong Pei, Liu Xinyu, et al.Evaluating the investment benefits of battery energy storage participating in peak shaving considering the state-dependent aging characteristics[J]. Transactions of China Electrotechnical Society, 2025, 40(13): 4330-4342.
[4] Shang Y, Wang S, Tang N, et al.Research Progress in Fault Detection of Battery Systems: A Review[J]. Journal of Energy Storage, 2024, 98: 113079.
[5] Alfraheed M I.A Review of Measurement Methods for Lithium-Based Battery Defect and Degradation Analysis[J]. International Journal of Modelling and Simulation,2025.DOI:10.1080/02286203.2025.2479667
[6] Gou Y, Yan Y, Lyu Y, et al.Advances in Acoustic Techniques for Evaluating Defects and Properties in Lithium-Ion Batteries: A Review[J]. Ultrasonics, 2024, 142: 107400.
[7] Jin Yang, Zhao Zhixing, Miao Shan, et al.Explosion Hazards Study of Grid-Scale Lithium-Ion Battery Energy Storage Station[J]. Journal of Energy Storage [J]. Journal of Energy Storage, 2021, 42: 102987.
[8] Kim T, Song W, Son D Y, et al.Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies[J]. Journal of materials chemistry A, 2019, 7(7): 2942-2964.
[9] Liu B, Zhang J G, Xu W.Advancing Lithium Metal Batteries[J]. Joule, 2018, 2(5): 833-845.
[10] Sun C, Liu J, Gong Y, et al.Recent Advances in All-Solid-State Rechargeable Lithium Batteries[J]. Nano Energy, 2017, 33: 363-386.
[11] Urbonaite S, Poux T, Novák P.Progress Towards Commercially Viable Li-S Battery Cells[J]. Advanced Energy Materials, 2015, 5(16): 1500118.
[12] Gabbar H A, Othman A M, Abdussami M R.Review of Battery Management Systems (BMS) Development and Industrial Standards[J]. Technologies, 2021, 9(2): 28.
[13] 张闯, 杨浩, 刘素贞, 等. 基于阻抗在线测量的锂离子电池过放电诱发内短路识别研究[J]. 电工技术学报, 2024, 39(6): 1656-1670.
Zhang C, Yang H, Liu SZ, et al. Research on over-discharge-induced internal short circuit identification of lithium-ion battery based on impedance online measurement[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1656-1670.
[14] 张闯, 王泽山, 刘素贞, 等. 基于电化学阻抗谱的锂离子电池过放电诱发内短路的检测方法[J]. 电工技术学报, 2023, 38(23): 6278-6291.
Zhang C, Wang ZS, Liu SZ, et al. Detection method of overdischarge-induced internal short circuit in lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6278-6291.
[15] 袁奥特, 蔡涛, 刘政辰, 等. 基于电化学阻抗谱的锂离子电池电滥用失效预警研究[J]. 电工技术学报, 2025, 40(7): 2306-2321.
Yuan Aote, Cai Tao, Liu Zhengchen, et al.Study on early warning of electrical abuse failure of lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2306-2321.
[16] 方斯顿,刘龙真,孔赖强,等.基于双向长短期记忆网络含间接健康指标的锂电池SOH估计[J].电力系统自动化,2024,48(04):160-168.
Fang S, Liu L, Kong L, Niu T, Chen G, Liao R.State-of-health estimation for lithium-ion batteries incorporating indirect health indicators based on bi-directional long short-term memory networks[J]. Automation of Electric Power Systems, 2024, 48(4): 160-168.
[17] Rahimi-Eichi H, Ojha U, Baronti F, et al.Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16.
[18] Lawder M T, Suthar B, Northrop P W C, et al. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications[J]. Proceedings of the IEEE, 2014, 102(6): 1014-1030.
[19] Wan X, Xu X, Li F, et al.Application of Nondestructive Testing Technology in Device-Scale for Lithium-Ion Batteries[J]. Small Structures, 2024, 5(3): 2300196.
[20] Hao S, Bailey J J, Iacoviello F, et al.3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries Using X-Ray Computed Tomography[J]. Advanced Functional Materials, 2021, 31(10): 2007564.
[21] Cai Z, Pan T, Jiang H, et al.State-of-Charge Estimation of Lithium-Ion Batteries Based on Ultrasonic Detection[J]. Journal of Energy Storage, 2023, 65: 107264.
[22] Sanders K J, Ciezki A A, Berno A, et al.Quantitative Operando 7Li NMR Investigations of Silicon Anode Evolution During Fast Charging and Extended Cycling[J]. Journal of the American Chemical Society, 2023, 145(39): 21502-21513.
[23] Romanenko K, Jerschow A.Numerical Modeling of Surface-Scan MRI Experiments for Improved Diagnostics of Commercial Battery Cells[J]. Journal of Magnetic Resonance Open, 2022, 10: 100061.
[24] Brauchle F, Grimsmann F, von Kessel O, et al. Defect Detection in Lithium Ion Cells by Magnetic Field Imaging and Current Reconstruction[J]. Journal of Power Sources, 2023, 558: 232587.
[25] Gajan A, Lecourt C, Torres Bautista B E, et al. Solid Electrolyte Interphase Instability in Operating Lithium-Ion Batteries Unraveled by Enhanced-Raman Spectroscopy[J]. ACS Energy Letters, 2021, 6(5): 1757-1763.
[26] Conder J, Bouchet R, Trabesinger S, et al.Direct Observation of Lithium Polysulfides in Lithium-Sulfur Batteries Using Operando X-Ray Diffraction[J]. Nature Energy, 2017, 2(6): 1-7.
[27] Gao A, Jiang P, Duan M, et al.Interphase Design Enabling Stable Cycling of All-Solid-State Lithium Metal Batteries by In-Situ X-Ray Photoelectron Spectroscopy Lithium Metal Sputtering[J]. Journal of Power Sources, 2024, 602: 234299.
[28] Ogley M J W, Menon A S, Pandey G C, et al. Metal-Ligand Redox in Layered Oxide Cathodes for Li-Ion Batteries[J]. Joule, 2025, 9(1): 101775.
[29] Robinson J B, Owen R E, Kok M D R, et al. Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements[J]. Journal of The Electrochemical Society, 2020, 167(12): 120530.
[30] Merazi-Meksen T, Kemmouche A, Boudraa M, et al.Sparse Representations to Replace TOFD Images in Non-Destructive Testing of Materials[J]. Journal of Nondestructive Evaluation, 2017, 36: 1-7.
[31] Nazer N S, Strobl M, Kaestner A, et al.Operando Neutron Imaging Study of a Commercial Li-Ion Battery at Variable Charge-Discharge Current Densities[J]. Electrochimica Acta, 2022, 427: 140793.
[32] Sheng S, Li H, Zhang Y, et al.Early Detection of Lithium Battery Leakage Using a Highly Sensitive In Situ ZIF-8 Membrane-Coated Micro-Nano Optical Fibre[J]. Light: Advanced Manufacturing, 2025, 6(1): 130-141.
[33] Bai W, Bu C, Chen P, et al.Study on Multimodal Excitation Infrared Thermography for Surface Damage Detection of Lithium Battery Pole Piece[J]. Nondestructive Testing and Evaluation, 2025. DOI: 10.1080/10589759.2025.2508427.
[34] Bak S M, Shadike Z, Lin R, et al.In Situ/Operando Synchrotron-Based X-Ray Techniques for Lithium-Ion Battery Research[J]. NPG Asia Materials, 2018, 10(7): 563-580.
[35] Pietsch P, Wood V.X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide[J]. Annual Review of Materials Research, 2017, 47(1): 451-479.
[36] Llewellyn A V, Matruglio A, Brett D J L, et al. Using In-Situ Laboratory and Synchrotron-Based X-Ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments[J]. Condensed Matter, 2020, 5(4): 75.
[37] Shojaei M J, Sivarajah A, Safdar T, et al.Advanced Battery Cathode Microstructure Analysis Through Operando Synchrotron X-Ray Tomography and Super-Resolution Deep Learning[J]. Solid State Ionics, 2025, 422: 116818.
[38] Yusuf M, LaManna J M, Paul P P, et al. Simultaneous Neutron and X-Ray Tomography for Visualization of Graphite Electrode Degradation in Fast-Charged Lithium-Ion Batteries[J]. Cell Reports Physical Science, 2022, 3(11), 101145.
[39] Xu C, Märker K, Lee J, et al.Bulk Fatigue Induced by Surface Reconstruction in Layered Ni-Rich Cathodes for Li-Ion Batteries[J]. Nature materials, 2021, 20(1): 84-92.
[40] Li X, Ren Z, Norouzi Banis M, et al.Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries[J]. ACS Energy Letters, 2019, 4(10): 2480-2488.
[41] Louisia S, Koper M T M, Mom R V. Prospects for Electrochemical X-Ray Photoelectron Spectroscopy as a Powerful Electrochemical Interface Characterization Technique[J]. Current Opinion in Electrochemistry, 2024, 45: 101462.
[42] Galiounas E, Tranter T G, Owen R E, et al.Battery State-of-Charge Estimation Using Machine Learning Analysis of Ultrasonic Signatures[J]. Energy and AI, 2022, 10: 100188.
[43] Liu K, Fang J, Zhao S, et al.Battery State-of-Health Estimation: An Ultrasonic Detection Method with Explainable AI[J]. Energy, 2025, 319: 134923.
[44] Xu Z, Chen X, Liu S, et al.Online Detection and In-Situ Characterization of Lithium Plating in Lithium-Ion Batteries Based on Ultrasonic Signals[J]. Journal of Energy Storage, 2025, 116: 116041.
[45] Xu W, Yang Y, Shi F, et al.Ultrasonic Phased Array Imaging of Gas Evolution in a Lithium-Ion Battery[J]. Cell Reports Physical Science, 2023, 4(9): 101579.
[46] Deng Z, Huang Z, Shen Y, et al.Ultrasonic Scanning to Observe Wetting and “Unwetting” in Li-Ion Pouch Cells[J]. Joule, 2020, 4(9): 2017-2029.
[47] McGee T M, Neath B, Matthews S, et al. Ultrasonic Inspection of Lithium-Ion Pouch Cells Subjected to Localized Thermal Abuse[J]. Journal of Power Sources, 2023, 583: 233542.
[48] Zhao K, Wan X, Lin Y, et al.Magnetic Field‐Based Non‐Destructive Testing Techniques for Battery Diagnostics[J]. Advanced Energy Materials, 2025, 15(10): 2404295.
[49] Baek J, Kim S, Kim H T, et al.Postmortem 7Li NMR Analysis for Assessing the Reversibility of Lithium Metal Electrodes in Lithium Metal Batteries[J]. Journal of Energy Chemistry, 2024, 94: 430-440.
[50] Ilott A J, Mohammadi M, Schauerman C M, et al.Rechargeable Lithium-Ion Cell State of Charge and Defect Detection by In-Situ Inside-Out Magnetic Resonance Imaging[J]. Nature communications, 2018, 9(1): 1776.
[51] Ziesche R F, Kardjilov N, Kockelmann W, et al.Neutron Imaging of Lithium Batteries[J]. Joule, 2022, 6(1): 35-52.
[52] Gao L, Han S, Ni H, et al. Application of Neutron Imaging in Observing Various States of Matter Inside Lithium Batteries [J]. National Science Review, 2023, 10(11): nwad238.
[53] Baddour-Hadjean R, Pereira-Ramos J P. Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries[J]. Chemical reviews, 2010, 110(3): 1278-1319.
[54] Jehnichen P, Korte C.Operando Raman Spectroscopy Measurements of a High-Voltage Cathode Material for Lithium-Ion Batteries[J]. Analytical chemistry, 2019, 91(13): 8054-8061.
[55] Weiling M, Pfeiffer F, Baghernejad M.Vibrational Spectroscopy Insight into the Electrode | Electrolyte Interface/Interphase in Lithium Batteries[J]. Advanced energy materials, 2022, 12(46): 2202504.
[56] Cheng Q, Wei L, Liu Z, et al.Operando and Three-Dimensional Visualization of Anion Depletion and Lithium Growth by Stimulated Raman Scattering Microscopy[J]. Nature communications, 2018, 9(1): 2942.
[57] Amaral M M, Real C G, Yukuhiro V Y, et al.In Situ and Operando Infrared Spectroscopy of Battery Systems: Progress and Opportunities[J]. Journal of Energy Chemistry, 2023, 81: 472-491.
[58] Ni S, Lama S, Lee Y J, et al.Early Detection of Secondary Battery Degradation by Infrared Technology: An Experimental Study[J]. Arabian Journal for Science and Engineering, 2025, 50(4): 2527-2540.
[59] Dileep H, Jha K K, Mahapatra P S, et al.Thermal Characterization of Pouch Cell Using Infrared Thermography and Electrochemical Modelling for the Design of Effective Battery Thermal Management System[J]. Applied Energy, 2024, 376: 124301.
[60] Yang J, Solomatin N, Kraytsberg A, et al.In-Situ Spectro-Electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium-Ion Battery[J]. ChemistrySelect, 2016, 1(3): 572-576.
[61] Norberg N S, Kostecki R.Interfacial Phenomena at a Composite LiMnPO4 Cathode[J]. Journal of The Electrochemical Society, 2012, 159(7): A1091.
[62] Zhang Y, Katayama Y, Tatara R, et al.Revealing Electrolyte Oxidation via Carbonate Dehydrogenation on Ni-Based Oxides in Li-Ion Batteries by In Situ Fourier Transform Infrared Spectroscopy[J]. Energy & Environmental Science, 2020, 13(1): 183-199.
[63] Wahl M S, Spitthoff L, Muri H I, et al.The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-Ion Batteries During Operation[J]. Energies, 2021, 14(12): 3617.
[64] Xia X, Wu W, Li Z, et al.State of Charge Estimation for Commercial Li-Ion Battery Based on Simultaneously Strain and Temperature Monitoring Over Optical Fiber Sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2516411.
[65] Li Y, Li K, Liu X, et al.A Hybrid Machine Learning Framework for Joint SOC and SOH Estimation of Lithium-Ion Batteries Assisted with Fiber Sensor Measurements[J]. Applied Energy, 2022, 325: 119787.
[66] Liu Y, Liu Z, Mei W, et al.Operando Monitoring Lithium-Ion Battery Temperature via Implanting Femtosecond-Laser-Inscribed Optical Fiber Sensors[J]. Measurement, 2022, 203: 111961.
[67] Withers P J, Bouman C, Carmignato S, et al.X-Ray Computed Tomography[J]. Nature Reviews Methods Primers, 2021, 1(1): 18.
[68] Zhao C, Wada T, De Andrade V, et al.Imaging of 3D Morphological Evolution of Nanoporous Silicon Anode in Lithium Ion Battery by X-Ray Nano-Tomography[J]. Nano energy, 2018, 52: 381-390.
[69] Tang F, Li D, Liu X, et al.Exploring Optimal Li Composite Electrode Anodes for Lithium Metal Batteries Through In Situ X-Ray Computed Tomography[J]. Energy Storage Materials, 2024, 72: 103746.
[70] Lu X, Bertei A, Finegan D P, et al.3D Microstructure Design of Lithium-Ion Battery Electrodes Assisted by X-Ray Nano-Computed Tomography and Modelling[J]. Nature communications, 2020, 11(1): 2079.
[71] Kodama M, Ohashi A, Adachi H, et al.Three-Dimensional Structural Measurement and Material Identification of an All-Solid-State Lithium-Ion Battery by X-Ray Nanotomography and Deep Learning[J]. Journal of Power Sources Advances, 2021, 8: 100048.
[72] Boyce A M, Martínez-Pañeda E, Wade A, et al.Cracking Predictions of Lithium-Ion Battery Electrodes by X-Ray Computed Tomography and Modelling[J]. Journal of Power Sources, 2022, 526: 231119.
[73] Hou J, Wang H, Qi L, et al.Material Parameter Analysis of Lithium-Ion Battery Based on Laboratory X-Ray Computed Tomography[J]. Journal of Power Sources, 2022, 549: 232131.
[74] Zhang Y, Gao K, Ma T, et al.Intelligent Recognition of Structural Health State of EV Lithium-Ion Battery Using Transfer Learning Based on X-Ray Computed Tomography[J]. Reliability Engineering & System Safety, 2024, 251: 110374.
[75] Rahe C, Kelly S T, Rad M N, et al.Nanoscale X-Ray Imaging of Ageing in Automotive Lithium-Ion Battery Cells[J]. Journal of power sources, 2019, 433: 126631.
[76] Sterkens W, Diaz-Romero D, Goedemé T, et al.Detection and Recognition of Batteries on X-Ray Images of Waste Electrical and Electronic Equipment Using Deep Learning[J]. Resources, Conservation and Recycling, 2021, 168: 105246.
[77] Li Y, Zhang X.Relation-Aware Graph Convolutional Network for Waste Battery Inspection Based on X-Ray Images[J]. Sustainable Energy Technologies and Assessments, 2024, 63: 103651.
[78] Heenan T M M, Finegan D P, Tjaden B, et al. 4D Nano-Tomography of Electrochemical Energy Devices Using Lab-Based X-Ray Imaging[J]. Nano Energy, 2018, 47: 556-565.
[79] Tan C, Heenan T M M, Ziesche R F, et al. Four-Dimensional Studies of Morphology Evolution in Lithium-Sulfur Batteries[J]. ACS Applied Energy Materials, 2018, 1(9): 5090-5100.
[80] Ziesche R F, Arlt T, Finegan D P, et al.4D Imaging of Lithium-Batteries Using Correlative Neutron and X-Ray Tomography With a Virtual Unrolling Technique[J]. Nature communications, 2020, 11(1): 777.
[81] Meng J, Xu L, Ma Q, et al.Modulating Crystal and Interfacial Properties by W‐Gradient Doping for Highly Stable and Long Life Li‐Rich Layered Cathodes[J]. Advanced Functional Materials, 2022, 32(19): 2113013.
[82] Zhang Y, Yin C, Qiu B, et al.Revealing Li-Ion Diffusion Kinetic Limitations in Micron-Sized Li-Rich Layered Oxides[J]. Energy Storage Materials, 2022, 53: 763-773.
[83] Lee J A, Kang H, Kim S, et al.Unveiling Degradation Mechanisms of Anode-Free Li-Metal Batteries[J]. Energy Storage Materials, 2024, 73: 103826.
[84] Khan H, Yerramilli A S, D'Oliveira A, et al. Experimental Methods in Chemical Engineering: X‐Ray Diffraction Spectroscopy—XRD[J]. The Canadian journal of chemical engineering, 2020, 98(6): 1255-1266.
[85] Liu H, Allan P K, Borkiewicz O J, et al.A Radially Accessible Tubular in Situ X-Ray Cell for Spatially Resolved Operando Scattering and Spectroscopic Studies of Electrochemical Energy Storage Devices[J]. Applied Crystallography, 2016, 49(5): 1665-1673.
[86] Borkiewicz O J, Shyam B, Wiaderek K M, et al.The AMPIX Electrochemical Cell: A Versatile Apparatus for In Situ X-Ray Scattering and Spectroscopic Measurements[J]. Applied Crystallography, 2012, 45(6): 1261-1269.
[87] Finegan D P, Vamvakeros A, Tan C, et al.Spatial Quantification of Dynamic Inter and Intra Particle Crystallographic Heterogeneities Within Lithium Ion Electrodes[J]. Nature communications, 2020, 11(1): 631.
[88] Sato K, Tamai A, Ohara K, et al.Non-Destructive Observation of Plated Lithium Distribution in a Large-Scale Automobile Li-Ion Battery Using Synchrotron X-Ray Diffraction[J]. Journal of Power Sources, 2022, 535: 231399.
[89] Liu H, Liu H, Lapidus S H, et al.Sensitivity and Limitations of Structures From X-Ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes[J]. Journal of The Electrochemical Society, 2017, 164(9): A1802.
[90] Kong X, Ren R, Zhu H, et al.Recent Advances in X-Ray Absorption Spectroscopy for Battery Applications[J]. The Journal of Physical Chemistry C, 2025.129(8): 3993-4009
[91] Gao X, Zheng X, Tsao Y, et al.All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators[J]. Journal of the American Chemical Society, 2021, 143(43): 18188-18195.
[92] Xu W, Lang S, Wang K, et al. Fundamental Mechanistic Insights into the Catalytic Reactions of Li-S Redox by Co Single-Atom Electrocatalysts via Operando Methods [J]. Science Advances, 2023, 9(33): eadi5108.
[93] Jo S, Kim H, Kim S, et al.Nanoscale Projection Hard X‐ray Microscope for Operando Statistical Analysis of Chemical Heterogeneity in Lithium‐Ion Battery Cathodes[J]. Small Methods, 2025, 9(3): 2401087.
[94] Shutthanandan V, Nandasiri M, Zheng J, et al.Applications of XPS in the Characterization of Battery Materials[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 2-10.
[95] Zhong W, Tao J, Chen Y, et al.Unraveling the Evolution of Cathode-Solid Electrolyte Interface Using Operando X-Ray Photoelectron Spectroscopy[J]. Advanced Powder Materials, 2024, 3(3): 100184.
[96] Breuer O, Gofer Y, Elias Y, et al.Misuse of XPS in Analyzing Solid Polymer Electrolytes for Lithium Batteries[J]. Journal of the Electrochemical Society, 2024, 171(3): 030510.
[97] Oyakhire S T, Gong H, Cui Y, et al.An X-Ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes[J]. ACS Energy Letters, 2022, 7(8): 2540-2546.
[98] Hsieh A G, Bhadra S, Hertzberg B J, et al.Electrochemical-Acoustic Time of Flight: In Operando Correlation of Physical Dynamics with Battery Charge and Health[J]. Energy & environmental science, 2015, 8(5): 1569-1577.
[99] Ladpli P, Kopsaftopoulos F, Chang F K.State of Charge and Health of Lithium-Ion Batteries with Guided Waves Using Built-In Piezoelectric Sensors/Actuators[J]. Journal of Power Sources, 2018, 384: 342-354.
[100] 刘素贞, 陈永博, 张闯, 等. 融合多维超声时频域特征的锂离子电池荷电状态估计[J]. 电工技术学报, 2024, 39(2): 607-616.
Liu Suzhen, Chen Yunlong, Zhang Chuang, et al.State-of-charge estimation of lithium-ion batteries based on multi-dimensional ultrasonic time-frequency features[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 607-616.
[101] 张闯, 高浪涛, 刘素贞, 等. 基于超声的锂离子电池微过充循环老化特性[J]. 电工技术学报, 2024, 39(24): 7965-7978.
Zhang Chuang, Gao Langtao, Liu Suzhen, et al.Micro-overcharge cycling aging characteristics of lithium-ion batteries based on ultrasonic measurement[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7965-7978.
[102] Ke Q, Jiang S, Li W, et al.Potential of Ultrasonic Time-of-Flight and Amplitude as the Measurement for State of Charge and Physical Changings of Lithium-Ion Batteries[J]. Journal of Power Sources, 2022, 549: 232031.
[103] Liu B, Tong W, Cao Y, et al.SOC Estimation Method Based on the Ultrasonic Guided Waves Considering the Significant Effect of Charge/Discharge Rate[J]. Journal of Energy Storage, 2024, 87: 111434.
[104] Xu M, Zhang E, Wang S, et al.Dynamic Ultrasonic Response Modeling and Accurate State of Charge Estimation for Lithium Ion Batteries under Various Load Profiles and Temperatures[J]. Applied Energy, 2024, 355: 122210.
[105] Tian Y, Yang S, State of Charge Estimation of Lithium-Ion Batteries Based on Ultrasonic Guided Waves by Chirped Signal Excitation[J]. Journal of Energy Storage, 2024, 84: 110897.
[106] Wu Y, Wang Y, Yung W K C, et al. Ultrasonic Health Monitoring of Lithium-Ion Batteries[J]. Electronics, 2019, 8(7): 751.
[107] Xia J, Xie T, Guo Y, et al.Battery Status Monitoring Based on Advanced Ultrasonic Technology[C]//2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS). IEEE, 2024: 1-4.
[108] Owen R E, Robinson J B, Weaving J S, et al.Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions[J]. Journal of The Electrochemical Society, 2022, 169(4): 040563.
[109] Lin X, Khosravinia K, Hu X, et al.Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953.
[110] Liu Q, Du C, Shen B, et al.Understanding Undesirable Anode Lithium Plating Issues in Lithium-Ion Batteries[J]. RSC advances, 2016, 6(91): 88683-88700.
[111] Xu W, Li L, Shi F, et al.Ultrasonic Spectroscopy for In Situ Early Detection and Dynamic Monitoring of Lithium Plating in Lithium-Ion Batteries[J]. Cell Reports Physical Science, 2025, 6(4): 102507.
[112] Xie Y, Wang S, Li R, et al.Inhomogeneous Degradation Induced by Lithium Plating in a Large-Format Lithium-Ion Battery[J]. Journal of Power Sources, 2022, 542: 231753.
[113] Rowden B, Garcia-Araez N.A Review of Gas Evolution in Lithium Ion Batteries[J]. Energy Reports, 2020, 6: 10-18.
[114] Liu P, Yang L, Xiao B, et al.Revealing Lithium Battery Gas Generation for Safer Practical Applications[J]. Advanced Functional Materials, 2022, 32(47): 2208586.
[115] Liu X, Lyu Y, Gao J, et al.Non-Destructive Estimation of Internal State for Lithium-Ion Batteries by Ultrasonic Phased Array Scanning and Imaging Technologies[J]. Journal of Energy Storage, 2025, 117: 116155.
[116] Tang D, Xu C, Xu G, et al.Non-Contact Laser Ultrasound Detection of Internal Gas Defects in Lithium-Ion Batteries[J]. Sensors, 2025, 25(7): 2033.
[117] Kaden N, Schlimbach R, Rohde Garcia A, et al.A Systematic Literature Analysis on Electrolyte Filling and Wetting in Lithium-Ion Battery Production[J]. Batteries, 2023, 9(3): 164.
[118] Feiler S, Johann J, Gold L, et al.Investigating Wetting and Formation Behavior of Consumer Format Pouch Cells Utilizing Ultrasound[J]. Journal of Power Sources, 2025, 643: 236988.
[119] Hou S, Yi M, Jiang F, et al.Ultrasonic Testing-Based Method for Segmental Calibration and Quantitative Estimation of the Electrolyte Content in Lithium-Ion Batteries[J]. Measurement, 2023, 217: 113101.
[120] Wang Q, Ping P, Zhao X, et al.Thermal Runaway Caused Fire And Explosion Of Lithium Ion Battery[J]. Journal of power sources, 2012, 208: 210-224.
[121] Kong D, Lv H, Ping P, et al.A Review Of Early Warning Methods Of Thermal Runaway Of Lithium Ion Batteries[J]. Journal of Energy Storage, 2023, 64: 107073.
[122] Cheng Y, Zhao S, Shen G, et al.Real-Time Temperature Monitoring Of Lithium Batteries Based On Ultrasonic Technology[J]. ACS omega, 2024, 9(17): 19517-19524.
[123] Owen R E, Wiśniewska E, Braglia M, et al.Operando Ultrasonic Monitoring Of The Internal Temperature Of Lithium-Ion Batteries For The Detection And Prevention Of Thermal Runaway[J]. Journal of The Electrochemical Society, 2024, 171(4): 040525.
[124] Shen Y, Zou B, Zhang Z, et al.In Situ Detection Of Lithium-Ion Batteries By Ultrasonic Technologies[J]. Energy Storage Materials, 2023, 62: 102915.
[125] Grey C P, Dupré N.NMR Studies Of Cathode Materials For Lithium-Ion Rechargeable Batteries[J]. Chemical reviews, 2004, 104(10): 4493-4512.
[126] Lin H, Jin Y, Tao M, et al.Magnetic Resonance Imaging Techniques For Lithium-Ion Batteries: Principles And Applications: Dedicated To The Special Issue “Magnetic Resonance Of Electrochemical Energy Storage Materials”[J]. Magnetic Resonance Letters, 2024,4(2): 200113.
[127] Liu X, Liang Z, Xiang Y, et al.Solid‐State NMR And MRI Spectroscopy For Li/Na Batteries: Materials, Interface, And In Situ Characterization[J]. Advanced Materials, 2021, 33(50): 2005878.
[128] Svirinovsky-Arbeli A, Juelsholt M, May R, et al.Using NMR Spectroscopy to Link Structure To Function At The Li Solid Electrolyte Interphase[J]. Joule, 2024, 8(7): 1921.
[129] Lin X, Shen Y, Yu Y, et al.In Situ NMR Verification for Stacking Pressure‐Induced Lithium Deposition and Dead Lithium in Anode‐Free Lithium Metal Batteries[J]. Advanced Energy Materials, 2024, 14(14): 2303918.
[130] Mönich C, Andersson R, Hernández G, et al. Seeing the Unseen: Mg2+, Na+, and K+ Transference Numbers in Post-Li Battery Electrolytes by Electrophoretic Nuclear Magnetic Resonance[J]. Journal of the American Chemical Society, 2024, 146(16): 11105-11114.
[131] Wang E, Jónsson E, Grey C P.NMR Methodology for Measuring Dissolved O2 and Transport in Lithium-Air Batteries[J]. The Journal of Physical Chemistry C, 2023, 127(21): 10001-10011.
[132] Allen J P, O’Keefe C A, Grey C P. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement[J]. The Journal of Physical Chemistry C, 2023, 127(20): 9509-9521.
[133] Marker K, Reeves P J, Xu C, et al.Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes During Electrochemical Cycling[J]. Chemistry of Materials, 2019, 31(7): 2545-2554.
[134] Krachkovskiy S A, Foster J M, Bazak J D, et al.Operando Mapping of Li Concentration Profiles and Phase Transformations in Graphite Electrodes by Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy[J]. The Journal of Physical Chemistry C, 2018, 122(38): 21784-21791.
[135] Bazak J D, Allen J P, Krachkovskiy S A, et al.Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI[J]. Journal of The Electrochemical Society, 2020, 167(14): 140518.
[136] Chien P H, Feng X, Tang M, et al.Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 Upon Electrochemical Cycling Probed by 7Li MRI[J]. The journal of physical chemistry letters, 2018, 9(8): 1990-1998.
[137] Ilott A J, Mohammadi M, Chang H J, et al.Real-Time 3D Imaging of Microstructure Growth in Battery Cells Using Indirect MRI[J]. Proceedings of the National Academy of Sciences, 2016, 113(39): 10779-10784.
[138] Bason M G, Coussens T, Withers M, et al.Non-Invasive Current Density Imaging of Lithium-Ion Batteries[J]. Journal of Power Sources, 2022, 533: 231312.
[139] Brauchle F, Grimsmann F, von Kessel O, et al. Direct Measurement of Current Distribution in Lithium-Ion Cells by Magnetic Field Imaging[J]. Journal of Power Sources, 2021, 507: 230292.
[140] Hu Y, Iwata G Z, Mohammadi M, et al.Sensitive Magnetometry Reveals Inhomogeneities in Charge Storage and Weak Transient Internal Currents in Li-Ion Cells[J]. Proceedings of the National Academy of Sciences, 2020, 117(20): 10667-10672.
[141] Green J E, Stone D A, Foster M P, et al.Spatially Resolved Measurements of Magnetic Fields Applied to Current Distribution Problems in Batteries[J]. IEEE Transactions on Instrumentation and measurement, 2014, 64(4): 951-958.
[142] Wang H, Dai L, Mao L, et al.In Situ Detection of Lithium‐Ion Battery Pack Capacity Inconsistency Using Magnetic Field Scanning Imaging[J]. Small Methods, 2022, 6(3): 2101358.
[143] Bai X, Peng D, Chen Y, et al.Three-Dimensional Electrochemical-Magnetic-Thermal Coupling Model for Lithium-Ion Batteries and Its Application in Battery Health Monitoring and Fault Diagnosis[J]. Scientific Reports, 2024, 14(1): 10802.
[144] Tan D, Meng F, Hai C, et al.A Novel Method for Enhancing the Image Quality of Neutron Projection Image[J]. Journal of Nondestructive Evaluation, 2024, 43(2): 53.
[145] Carreon Ruiz E R, Lee J, Strobl M, et al. Revealing the Impact of Temperature in Battery Electrolytes via Wavelength-Resolved Neutron Imaging [J]. Science Advances, 2023, 9(39): eadi0586.
[146] Senyshyn A, Baran V, Mühlbauer M J, et al. Uniformity of Flat Li-Ion Batteries Studied by Diffraction and Imaging of X-Rays and Neutrons[J]. ACS applied energy materials, 2021, 4(4): 3110-3117.
[147] Heber M, Hofmann K, Hess C.Raman Diagnostics of Cathode Materials for Li-Ion Batteries Using Multi-Wavelength Excitation[J]. Batteries, 2022, 8(2): 10.
[148] Li G, Li H, Mo Y, et al.Further Identification to the SEI Film on Ag Electrode in Lithium Batteries by Surface Enhanced Raman Scattering (SERS)[J]. Journal of power sources, 2002, 104(2): 190-194.
[149] Li H, Mo Y, Pei N, et al.Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries[J]. The Journal of Physical Chemistry B, 2000, 104(35): 8477-8480.
[150] Flores E, Novák P, Berg E J.In Situ and Operando Raman Spectroscopy of Layered Transition Metal Oxides for Li-Ion Battery Cathodes[J]. Frontiers in Energy Research, 2018, 6: 82.
[151] Nonaka T, Kawaura H, Makimura Y, et al.In Situ X-Ray Raman Scattering Spectroscopy of a Graphite Electrode for Lithium-Ion Batteries[J]. Journal of Power Sources, 2019, 419: 203-207.
[152] Bagavathiappan S, Lahiri B B, Saravanan T, et al.Infrared Thermography for Condition Monitoring-A Review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
[153] Stoynova A, Bonev B, Rizanov S, et al.Utilization of Infrared Thermography for Battery Performance Inspection[C]//2023 XXXII International Scientific Conference Electronics (ET). IEEE, 2023: 1-5.
[154] Liu Y, Xu S, Wang Y, et al.Non-Contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography[J]. International Journal of Thermophysics, 2022, 43(9): 131.
[155] Giammichele L, D’Alessandro V, Falone M, et al. Thermal Behaviour Assessment and Electrical Characterisation of a Cylindrical Lithium-Ion Battery Using Infrared Thermography[J]. Applied Thermal Engineering, 2022, 205: 117974.
[156] Kim H J, Lee J H, Baek D H, et al.A Study on Thermal Performance of Batteries Using Thermal Imaging and Infrared Radiation[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 360-365.
[157] Shi F, Ross P N, Somorjai G A, et al.The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by In Situ ATR-FTIR Spectroscopy[J]. The Journal of Physical Chemistry C, 2017, 121(27): 14476-14483.
[158] Dalla Corte D A, Gouget-Laemmel A C, Lahlil K, et al. Molecular Grafting on Silico-Electrolyte Interphase and Surface Stabilization [J]. Electrochimica Acta, 2016, 201: 70-77.
[159] Haregewoin A M, Shie T D, Lin S D, et al. An Effective In Situ DRIFTS Analysis of the Solid Electrolyte Interface in Lithium-Ion Battery [J]. ECS Transactions, 2013, 53(36): 23.
[160] Tan K, Liu H, Dai X, et al. In Situ Monitoring of Cycling Characteristics in Lithium-Ion Battery Based on a Two-Cavity Cascade Fiber-Optic Fabry-Perot Interferometer [J]. Measurement: Energy, 2024, 3: 100011.
[161] Ge X, Zhang Y, Du R, Revealing the Electrochemical-Mechanical Correspondence Between Electrode Films and 20 Ah Prismatic Li-Ion Batteries via Optical Fiber Monitoring [J]. Chemical Engineering Journal, 2024, 488: 150895.
[162] Xi J, Li J, Sun H, et al. In-Situ Monitoring of Internal Temperature and Strain of Solid-State Battery Based on Optical Fiber Sensors [J]. Sensors and Actuators A: Physical, 2022, 347: 113888.
[163] Huang J, Blanquer L A, Gervillié C, et al. Distributed Fiber Optic Sensing to Assess In-Live Temperature Imaging Inside Batteries: Rayleigh and FBGs [J]. Journal of The Electrochemical Society, 2021, 168(6): 060520.
[164] Miao Z, Li Y, Xiao X, et al. Direct Optical Fiber Monitor on Stress Evolution of the Sulfur-Based Cathodes for Lithium–Sulfur Batteries [J]. Energy & Environmental Science, 2022, 15(5): 2029-2038.
[165] Wang R, Zhang H, Liu Q, et al. Operando Monitoring of Ion Activities in Aqueous Batteries with Plasmonic Fiber-Optic Sensors [J]. Nature communications, 2022, 13(1): 547. |