Numerical Simulation of Nonlinear Response of Nanodielectrics and Non-Destructive Evaluation of Agglomeration Degree
Qiu Yonglin1, Zhang Shuo1, Cheng Li1, Wang Hanqing1,2
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. Contemporary Amperex Future Energy Research Institute (Shanghai) Limited Shanghai 201109 China
Abstract:Doped nanoparticles can effectively enhance the electrical properties of nanodielectrics; however, the degree of agglomeration of particles in the matrix significantly influences the modification effect. At present, microscopic imaging is predominantly employed to evaluate the degree of nanodielectric particle agglomeration; however, this method is time-consuming and costly for a single measurement, offers a highly limited observation area, and may damage the material under investigation. Nonlinear ultrasound enables the detection of micro- and nano-defects in materials by detecting nonlinear changes in stress-strain and is a potential technique for assessing the degree of particle agglomeration. This paper investigates the origin of the nonlinear response of nanodielectrics and employ nonlinear ultrasound technology for assessing nanodielectric particle dispersion. The findings indicate that the equivalent particle size inversion results obtained through nonlinear ultrasound technology exhibit an error margin of 3%~6% compared to the particle size statistical results from the scanning electron microscope (SEM). Furthermore, nonlinear ultrasound technology facilitates a rapid, comprehensive, and nondestructive evaluation of the degree of nanodielectric particle agglomeration. An agglomerated interfacial mismatch model was initially developed, employing the interfacial mismatch coefficient δ to analogously describe the degree of particle agglomeration. On this basis, an ontological model of the nonlinear response of nanodielectrics is derived by combining the nonlinear ultrasonic wave motion equation to quantitatively solve the nonlinear response of nanodielectrics introduced due to the particle agglomeration interface. Subsequently, a simplified two-dimensional acoustic model for SiO2/epoxy resin (EP) featuring varying degrees of agglomeration was created using COMSOL software's partial differential equation module, to validate the nanodielectric nonlinear response model, and the simulation results demonstrate that the second-order nonlinear coefficient β escalates with the degree of particle agglomeration. Combined with the simulation model, the optimal interval of ultrasonic excitation signal frequency parameter is 0.1~5 MHz, and the optimal amplitude parameter is 70 nm, which provides a theoretical basis for the construction of the subsequent experimental platform. Ultimately, three SiO2/EP samples with different dispersibility were prepared by controlling the ultrasonic dispersion treatment time. The nonlinear ultrasound experimental setup was established, and the samples underwent testing using in atomic force microscopy (AFM), SEM, and nonlinear ultrasound. The AFM test results indicate that the stress-strain hysteresis in the dispersed particle-substrate interface region is negligible, with no additional nonlinearity introduced. In the agglomerated particle-substrate interface region, the stress-strain hysteresis is significant, with a notable increase in the nonlinear coefficient, highlighting the agglomeration interface as the primary source of nonlinearity in nanodielectrics. SEM and nonlinear ultrasound test outcomes reveal that the degree of agglomeration in the three samples escalates as the ultrasonic dispersion treatment time decreases, with a concurrent increase in the nonlinear coefficient. Utilizing the nonlinear coefficient and in conjunction with the nanodielectrics' nonlinear response model, the equivalent particle size of agglomerates can be quantitatively determined. The test outcomes demonstrate that the equivalent particle size determined by nonlinear ultrasound technology exhibits an error margin of 2.75% to 5.2% compared to SEM particle size statistics. Furthermore, this method offers the benefits of speed, comprehensiveness, and non-destructive evaluation, presenting a novel approach for assessing nanodielectric dispersion.
[1] 程子霞, 邢威威, 张云霄, 等. 纳米MgO/环氧树脂复合材料的陷阱特性及对电树枝特性的影响研究[J]. 电工技术学报, 2022, 37(21): 5562-5569. Cheng Zixia, Xing Weiwei, Zhang Yunxiao, et al.Study on trap properties of nano-MgO/epoxy resin composites and its influence on electrical tree properties[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5562-5569. [2] 戴超, 朱光宇, 丁曼, 等. 高温阶梯式升压下等离子体处理纳米颗粒对环氧树脂复合材料的电荷动力学特性影响[J]. 电工技术学报, 2023, 38(21): 5712-5724. Dai Chao, Zhu Guangyu, Ding Man, et al.Influence of plasma treated nanoparticles on charge dynamics of epoxy based nanocomposites under stepped boost at high temperature[J]. Transactions of China Electro-technical Society, 2023, 38(21): 5712-5724. [3] 曹春诚, 李文博, 程显, 等. 纳米Al2O3/环氧树脂复合材料微秒脉冲沿面闪络特性研究[J]. 高压电器, 2023, 59(6): 111-119. Cao Chuncheng, Li Wenbo, Cheng Xian, et al.Study on surface flashover characteristic of nano-Al2O3/ epoxy resin composites in microsecond pulse[J]. High Voltage Apparatus, 2023, 59(6): 111-119. [4] Wang Sijiao, Zha Junwei, Wu Yunhui, et al.Preparation, microstructure and properties of polyethylene/alumina nanocomposites for HVDC insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3350-3356. [5] 王霞, 王陈诚, 朱有玉, 等. 高压直流塑料电缆绝缘用纳米改性交联聚乙烯中的空间电荷特性[J]. 高电压技术, 2015, 41(4): 1096-1103. Wang Xia, Wang Chencheng, Zhu Youyu, et al.Space charge profiles in XLPE nano dielectrics used for HVDC plastic cable insulation[J]. High Voltage Engineering, 2015, 41(4): 1096-1103. [6] Peng Zhongchuan, Li Qian, Li Huayi, et al.Polyethylene-modified nano silica and its fine dispersion in polyethylene[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5892-5898. [7] Balzer C, Armstrong M, Shan Bohan, et al.Modeling nanoparticle dispersion in electrospun nanofibers[J]. Langmuir, 2018, 34(4): 1340-1346. [8] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911. He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911. [9] Roy M, Nelson J K, MacCrone R K, et al. Polymer nanocomposite dielectrics - the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643. [10] 姜楠, 李志阳, 彭邦发, 等. 等离子体羟基化改性纳米SiO2粒子对绝缘纸绝缘特性的影响[J]. 电工技术学报, 2023, 38(24): 6817-6827. Jiang Nan, Li Zhiyang, Peng Bangfa, et al.Effect of plasmas hydroxylation modified nano-SiO2 particles on insulation characteristics of insulating papers[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6817-6827. [11] 刘道生, 周春华, 丁金, 等. 变压器纳米改性油纸复合绝缘研究综述[J]. 电工技术学报, 2023, 38(9): 2464-2479, 2490. Liu Daosheng, Zhou Chunhua, Ding Jin, et al.Research overview of oil-paper composite insulation modified by nano particles for transformer[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2464-2479, 2490. [12] 李进, 赵仁勇, 杜伯学, 等. 电工环氧绝缘件缺陷无损检测方法研究进展[J]. 电工技术学报, 2021, 36(21): 4598-4607. Li Jin, Zhao Renyong, Du Boxue, et al.Research progress of nondestructive detection methods for defects of electrical epoxy insulators[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4598-4607. [13] Chen Lianyi, Xu Jiaquan, Choi H, et al.Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528(7583): 539-543. [14] Wang Fei, Ma Jinzhu, Xin Shaohui, et al.Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance[J]. Nature Communications, 2020, 11(1): 529. [15] Wetteland C L, Liu Huinan.Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2018, 106(10): 2692-2707. [16] 谭及兰. 改性的纳米氧化铝杂化三层复合PI薄膜的结构与介电性能[D]. 哈尔滨: 哈尔滨理工大学, 2014. Tan Jilan.Structure and dielectric properties of modified nano-alumina hybrid three-layer PI composite films[D]. Harbin: Harbin University of Science and Technology, 2014. [17] Zhang Naiyin, Xu Changlu, Azer A, et al.Dispersibility and characterization of polyvinyl alcohol-coated magnetic nanoparticles in poly(glycerol sebacate) for biomedical applications[J]. Journal of Nanoparticle Research, 2019, 21(12): 275. [18] 付翔. 定量评价纳米粒子在基体中的分散性[D]. 杭州: 浙江理工大学, 2014. Fu Xiang.Quantitative evaluation of dispersion of nanoparticles in the matrix[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. [19] Buck O.Harmonic generation for measurement of internal stresses as produced by dislocations[J]. IEEE Transactions on Sonics and Ultrasonics, 1976, 23(5): 346-350. [20] Gedroits A A, Krasil'Nikov V A. Finite-amplitude elastic waves in solids and deviations from Hooke's Law[J]. Soviet Journal of Experimental and Theoretical Physics, 1963, 16(5): 1122-1126. [21] Nagy P B.Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998, 36(1/2/3/4/5): 375-381. [22] Cantrell J, Yost W.Acoustic harmonic generation from fatigue-induced dislocation dipoles[J]. Philosophical Magazine, Part A, 1994, 69(2): 315-326. [23] Demčenko A, Koissin V, Korneev V A.Noncollinear wave mixing for measurement of dynamic processes in polymers: physical ageing in thermoplastics and epoxy cure[J]. Ultrasonics, 2014, 54(2): 684-693. [24] 焦敬品, 李亮, 何存富, 等. 有机材料热老化损伤非线性超声检测试验研究[J]. 北京工业大学学报, 2016, 42(1): 24-29. Jiao Jingpin, Li Liang, He Cunfu, et al.Experimental investigation of thermal aging of organic polymer materials with nonlinear ultrasonic method[J]. Journal of Beijing University of Technology, 2016, 42(1): 24-29. [25] 张剑锋, 轩福贞, 项延训. 材料损伤的非线性超声评价研究进展[J]. 科学通报, 2016, 61(14): 1536-1550. Zhang Jianfeng, Xuan Fuzhen, Xiang Yanxun.Evaluation of material damage using nonlinear ultrasonic wave[J]. Chinese Science Bulletin, 2016, 61(14): 1536-1550. [26] Koissin V, Demčenko A, Korneev V A.Isothermal epoxy-cure monitoring using nonlinear ultrasonics[J]. International Journal of Adhesion and Adhesives, 2014, 52: 11-18. [27] 王汉卿, 成立, 廖瑞金, 等. 复合绝缘子交界面非线性力学模型及弱粘接缺陷无损检测方法[J]. 中国电机工程学报, 2019, 39(3): 895-905, 968. Wang Hanqing, Cheng Li, Liao Ruijin, et al.Nonlinear mechanical model of composite insulator interface and nondestructive testing method for weak bonding defects[J]. Proceedings of the CSEE, 2019, 39(3): 895-905, 968. [28] Wang Hanqing, Cheng Li, Liao Ruijin, et al.Nonlinear ultrasonic nondestructive detection and modelling of kissing defects in high voltage composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 924-931. [29] 成立, 方伟, 王汉卿, 等. 基于非线性声学的纳米复合电介质分散性整体无损评估方法[J]. 中国电机工程学报, 2021, 41(15): 5401-5411. Cheng Li, Fang Wei, Wang Hanqing, et al.Overall nondestructive evaluation method for the dispersion of nanocomposite dielectrics based on nonlinear acoustics[J]. Proceedings of the CSEE, 2021, 41(15): 5401-5411. [30] Punnose S, Mukhopadhyay A, Sarkar R, et al.Characterisation of microstructural damage evolution during tensile deformation of a near-α titanium alloy: Effects of microtexture[J]. Materials Science and Engineering: A, 2014, 607: 476-481. [31] Xiang Yanxun, Deng Mingxi, Xuan Fuzhen.Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique[J]. Journal of Nondestructive Evaluation, 2014, 33(2): 279-287. [32] Zhao Junhua, Lu Lixin, Zhang Zhiliang, et al.Continuum modeling of the cohesive energy for the interfaces between films, spheres, coats and substrates[J]. Computational Materials Science, 2015, 96: 432-438. [33] Ben Sudong, Zhao Junhua, Rabczuk T.A theoretical analysis of interface debonding for coated sphere with functionally graded interphase[J]. Composite Structures, 2014, 117: 288-297. [34] Hossain D, Tschopp M A, Ward D K, et al.Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene[J]. Polymer, 2010, 51(25): 6071-6083. [35] 张发友. 基于非线性超声的材料损伤检测研究[D]. 郑州: 郑州大学, 2019. Zhang Fayou.Study on damage detection of materials based on nonlinear ultrasonic[D]. Zhengzhou: Zhengzhou University, 2019. [36] Richardson J M.Harmonic generation at an unbonded interface-I. planar interface between semi-infinite elastic media[J]. International Journal of Engineering Science, 1979, 17(1): 73-85. [37] Cantrell J H, Yost W T.Acoustic nonlinearity and cumulative plastic shear strain in cyclically loaded metals[J]. Journal of Applied Physics, 2013, 113(15): 153506. [38] Cantrell J H, Zhang X G.Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network[J]. Journal of Applied Physics, 1998, 84(10): 5469-5472. [39] Hiki Y, Granato A V.Anharmonicity in noble metals; higher order elastic constants[J]. Physical Review, 1966, 144(2): 411-419. [40] 江念. 金属非金属粘接强度非线性超声检测信号处理方法研究[D]. 太原: 中北大学, 2015. Jiang Nian.Research of signal processing method for nonlinear ultrasonic testing of adhesive strength between metal and nonmetal components[D]. Taiyuan: North University of China, 2015. [41] 李秋锋, 李建慧, 卢超, 等. 搅拌摩擦加工CNTs/Al复合材料超声非线性评价[J]. 焊接学报, 2017, 38(11): 87-92, 133. Li Qiufeng, Li Jianhui, Lu Chao, et al.Ultrasonic nonlinear evaluation for carbon-nanotubes reinforced aluminum matrix composites processed by friction stir processing method[J]. Transactions of the China Welding Institution, 2017, 38(11): 87-92, 133. [42] Hong Xiaobin, Lin Xiaohui, Yang Bo, et al.Crack detection in plastic pipe using piezoelectric transducers based on nonlinear ultrasonic modulation[J]. Smart Materials and Structures, 2017, 26(10): 104012. [43] Alston J, Croxford A, Potter J, et al.Development of a nonlinear ultrasonic NDE technique for detection of kissing bonds in composites[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, Oregon, USA, 2017: 101691J. [44] 陆铭慧, 刘磨, 张雪松, 等. RTM玻璃纤维/E51环氧树脂复合材料孔隙含量对超声特征参数的影响[J]. 复合材料学报, 2018, 35(2): 291-297. Lu Minghui, Liu Mo, Zhang Xuesong, et al.Effect of void content on ultrasonic characteristic parameters of RTM glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 291-297. [45] Wang Chuang, Zhou Gang, Sun Qing, et al.Numerical simulation of the interfacial stress between epoxy resin and metal conductor of power equipment during epoxy curing[J]. High Voltage, 2022, 7(5): 903-915.