Abstract:In a cascaded power system, the system stability can be affected by the impedance interaction of the source converter and the load converter. Many literatures analyzed the effects on the impedance characteristics of the converter from different control methods and circuit parameters. Besides, different passive damping methods and control methods to improve the impedance characteristics of the converter are proposed to ensure the cascaded system stable. On the basis of the small signal model, an active damping method to emulate a virtual resistor, which is connected in parallel with the output of the converter’s small signal model, is presented in this paper. By this means, the output impedance of the converter can be decreased and the damping characteristics can be improved. The AC component of the output voltage needs to be sampled by the active damping controller so the steady-state operating point is not affected. Therefore, the effects caused by the impedance interaction between the source converter and load converter can be weakened. The effectiveness of this method is verified by the simulation and experiment results.
贾鹏宇, 李艳, 郑琼林. 电压型级联系统中减小源变换器输出阻抗的有源阻尼控制方法[J]. 电工技术学报, 2015, 30(8): 71-82.
Jia Pengyu, Li Yan, Trillion Q Zheng. An Active Damping Method to Reduce Output Impedance of Converters in Voltage Source Cascaded System. Transactions of China Electrotechnical Society, 2015, 30(8): 71-82.
[1] Middlebrook R D. Input filter considerations in design and application of switching regulators[C]. IEEE Proc. IAS, 1976: 366-382. [2] Wildrick C M, Lee F C, Cho B H, et al. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics, 1995, 10(3): 280-285. [3] Feng Xiaogang, Ye Zhihong, Xing Kun, et al. Individual load impedance specification for a stable DC distributed power system[C]. Applied Power Electronics Con- ference and Exposition, 1999, 2: 923-929. [4] Feng Xiaogang, Ye Zhihong, Xing Kun, et al. Impe- dance specification and impedance improvement for DC distributed power system[C]. Power Electronics Specialists Conference, 1999, 2: 889-894. [5] Karppanen M, Sippola M, Suntio T. Source-imposed instability and performance degradation in a regulated converter[C]. IEEE Power Electronics Specialists Conference, 2007: 194-200. [6] 王建华, 张方华, 龚春英, 等. 电压控制型Buck DC/DC变换器输出阻抗优化设计[J]. 电工技术学报, 2007, 22(8): 18-23. Wang Jianhua, Zhang Fanghua, Gong Chunying, et al. Study of output impedance optimization for voltage mode control Buck DC/DC converter[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 18-23. [7] 吴涛, 阮新波. 分布式供电系统中源变换器的输出阻抗的研究[J]. 中国电机工程学报, 2008, 28(3): 66-72. Wu Tao, Ruan Xinbo. Output impedance analysis of source converters in the DC distributed power system [J]. Proceedings of the CSEE, 2008, 28(3): 66-72. [8] 吴涛, 阮新波. 分布式供电系统中负载变换器的输入阻抗分析[J]. 中国电机工程学报, 2008, 28(12): 20-25. Wu Tao, Ruan Xinbo. Input impedance analysis of load converters in the distributed power system[J]. Proceedings of the CSEE, 2008, 28(12): 20-25. [9] 姚雨迎, 张东来, 徐殿国. 级联式DC/DC变换器输出阻抗的优化设计与稳定性[J]. 电工技术学报, 2009, 24(3): 147-152. Yao Yuying, Zhang Donglai, Xu Dianguo. Output impedance optimization and stability for cascade DC/ DC converter[J]. Transactions of China Electrotech- nical Society, 2009, 24(3): 147-152. [10] Mitchell D M. Damped EMI filters for switching regulators[J]. IEEE Transactions on Electromagnetic Compatibiliy, 1978, 20(3): 457-463. [11] Jusoh A B. The instability effect of constant power loads[C]. Natl. Power Energy Conf., 2004: 175-179. [12] Cespedes M, Xing L, Sun J. Constant-power load system stabilization by passive damping[J]. IEEE Transac- tions on Power Electronics, 2011, 26(7): 1832-1836. [13] Redl R, Sokal N O. Near-optimum dynamic regulation of DC-DC converters using feed-forward of output current and input voltage with current-mode control [J]. IEEE Transactions on Power Electronics, 1986, 1(3): 181-192. [14] 伍小杰, 孙蔚, 戴鹏, 等. 一种虚拟电阻并联电容有源阻尼法[J]. 电工技术学报, 2010, 25(10): 122-128. Wu Xiaojie, Sun Wei, Dai Peng, et al. An active damping method of virtual resistor in parallel with capacitor[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 122-128. [15] 张学广, 刘义成, 王瑞, 等. 一种新型的PWM变换器LCL滤波器有源阻尼控制策略[J]. 电工技术学报, 2011, 26(10): 188-192. Zhang Xueguang, Liu Yicheng, Wang Rui, et al. A novel active damping control strategy for PWM converter with LCL filter[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 188-192. [16] Hatua K, Jain A K, Banerjee D, et al. Active damping of output LC filter resonance for vector-controlled VSI-fed AC motor drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 334-342. [17] Dannehl J, Liserre M, Fuchs F W. Filter-based active damping of voltage source converters with LCL filter [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3623-3633. [18] Dahono P A. A control method for DC-DC converter that has an LCL output filter based on new virtual capacitor and resistor concepts[C]. Power Electronics Specialists Conference, 2004, 1: 36-42. [19] Rahimi A M, Emadi A. Active damping in DC/DC power electronic converters: a novel method to over- come the problems of constant power loads[J]. IEEE Transactions on Industial Electronics, 2009, 56(5): 1428-1439. [20] Zhang X, Ruan X, Kim H, et al. Adaptive active capacitor converter for improving stability of cascaded DC power supply system[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1807-1816. [21] Weaver W W, Krein P T. Mitigation of power system collapse through active dynamic buffers[C]. IEEE PESC, 2004: 1080-1084. [22] Weaver W W, Krein P T. Optimal geometric control of power buffers[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1248-1258. [23] Erickson R W. Fundamentals of Power Electronics [M]. Dordrecht, Netherlands: Kluwer Academic Pub- lishers, 2000. [24] Hankaniemi M, Karppanen M, Suntio T. Load-imposed instability and performance degradation in a regulated converter[J]. Electric Power Applications, 2006, 153(6): 781-786. [25] Pengyu Jia, Trillion Q Zheng, Yan Li. Parameter design of damping networks for the Superbuck converter [J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3845-3859. [26] 陈骞, 郑琼林, 李艳. 单电感电流连续型推挽类拓扑的推衍和特性研究[J]. 中国电机工程学报, 2013, 33(6): 85-92. Chen Qian, Trillion Q. Zheng, Li Yan. Derivation and characterization of single-inductor push-pull based topologies with continuous currents[J]. Proceedings of the CSEE, 2013, 33(6): 85-92.