Abstract:Numerical weather prediction (NWP) plays an important role in the accuracy of the short-term wind power prediction models.Considering NWP information of multiple locations around a wind farm,this paper introduces a method based on the cluster analysis and the principal component analysis to study the short-term prediction of the wind power generating capacity.The sample in the historical data closest to the NWP of the forecast day is extracted by the clustering analysis.Then the principal component analysis of the sample information is proceeded to obtain the parameters which reflects the characteristics of the wind farm.Simulation is performed consideringthe wind power generation of Yilan wind farm.The results show that the method is effective and its precision improves 4.65% than the prediction model based on NWP of single location.
王丽婕,冬雷,高爽. 基于多位置NWP与主成分分析的风电功率短期预测[J]. 电工技术学报, 2015, 30(5): 79-84.
Wang Lijie,Dong Lei,Gao Shuang. Wind Power Short-term Prediction Based on Principal Component Analysis of NWP of Multiple Locations. Transactions of China Electrotechnical Society, 2015, 30(5): 79-84.
[1] 张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9. Zhang Liying,Ye Tinglu,Xin Yaozhong,et al.Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9. [2] 王贺,胡志坚,张翌晖,等.基于聚类经验模态分解和最小二乘支持相量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245. Wang He,Hu Zhijian,Zhang Yihui,et al.A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J].Transactions of China Electrotechnical Society,2014,29(4):237-245. [3] Soman S S,Zareipour H,Malik O,et al.A review of wind power and wind speed forecasting methods with different time horizons[C].North American Power Symposium (NAPS),Arlington,TX,2010:1-8. [4] 何东,刘瑞叶.基于主成分分析的神经网络动态集成风功率超短期预测[J].电力系统保护与控制,2013,41(4):50-54. He Dong,Liu Ruiye.Ultra-short-term wind power prediction using ANN ensemble based on the principal components analysis[J].Power System Protection and Control,2013,41(4):50-54. [5] 周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132. Zhou Songlin,Mao Meiqin,Su Jianhui.Prediction of wind power based on principal component analysis and artificial neural network[J].Power System Technology,2011,35(9):128-132. [6] Ernst B,Oakleaf B,Ahlstrom M L,et al.Predicting the wind[J].IEEE Power & Energy Magazine,2007,10(11):79-89. [7] Khalid M,Savkin A V.A method for short-term wind power prediction with multiple observation points[J].IEEE Transactions on Power Systems,2012,27(2):579-586. [8] Stathopoulos Christos,Kaperoni Akrivi,Galanis George,et al.Wind power prediction based on numerical and statistical models[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,112(1):25-38. [9] Lazic Lazar,Pejanovic Goran,Zivkovic Momcilo.Wind forecasts for wind power generation using the Eta model[J].Renewable Energy,2010,35(6):1236-1243. [10]Wei Wei,Zhang Yajie,Wu Guilian,et al.Ultra-short-term/short-term wind power continuous prediction based on fuzzy clustering analysis[C].IEEE Innovative Smart Grid Technologies-Asia,2012:1-6. [11]Sideratos G,Hatziargyriou N.Using radial basis neural networks to estimate wind power production[C].IEEE Power Engineering Society General Meeting,2007:1-7. [12]Q/GDW 588-2011.风电功率预测功能规范[S].