Abstract:In order to detect the scale qualities of wind speed time series, the wind speed time series are analyzed by multi-fractal detrended fluctuation analysis(MF-DFA) method. Detailed quantitative the volatility singularity of partial and different levels of the wind speed time series are calculated by the generalized Hurst index, scaling function and multi-fractal spectrum, and the effects of multi-fractal parameters on wind speed prediction are considered. The analysis results show that fluctuation of wind speed time series have log-range correlation and significant multi-fractal characteristics. The multi-fractal parameters associated with the change of wind speed, to some degree, can be predicted by multi-fractal spectrums, and the prediction becomes more accurate with the more fluctuation of the wind speed.
孙斌, 姚海涛. 风电场风速时间序列的多重分形去趋势波动分析[J]. 电工技术学报, 2014, 29(6): 204-210.
Sun Bin , Yao Haitao. Multi-fractal Detrended Fluctuation Analysis of Wind Speed Time Series in Wind Farm. Transactions of China Electrotechnical Society, 2014, 29(6): 204-210.
[1] 雷亚洲, 王伟胜, 印永华, 等. 风电对电力系统运行的价值分析[J]. 电网技术, 2002, 26(2): 10-14. Lei Yazhou, Wang Weisheng, Yin Yonghua, et al. Analysis of wind power value to wind power operation prospect[J]. Power System Technology, 2002, 26(2): 10-14. [2] 冬雷, 王丽婕, 高爽, 等. 基于混沌时间序列的大型风电场发电功率预测建模与研究[J]. 电工技术学报, 2008, 23(12): 125-129. Dong Lei, Wang Lijie, Gao Shuang, et al. Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series [J]. Transactions of China Electrotechnical Society, 2008, 23(12): 125-129. [3] 冬雷, 高爽, 廖晓钟, 等. 风力发电系统发电容量时间序列的混沌属性分析[J]. 太阳能学报, 2007, 28(8): 1290-1294. Dong Lei, Gao Shuang, Liao Xiaozhong, et al. Chaos characteristic analysis on the time series of wind power generation capacity[J]. Acta Energiae Solaris Sinica, 2007, 28(8): 1290-1294. [4] 王东风, 张有玥, 韩璞, 等. 风电场风速时间序列的复杂动力特性分析[J]. 同济大学学报(自然科学版), 2010, 38(12): 1828-1831. Wang Dongfeng, Zhang Youyue, Han Pu, et al. Complex dynamical analysis of wind speed time series in wind farm[J]. Journal of Tongji University (Natural Science), 2010, 38(12): 1828-1831. [5] 吕涛, 唐巍, 所丽. 基于混沌相空间重构理论的风电场短期风速预测[J]. 电力系统保护与控制, 2010, 38(21): 113-117. Lü Tao, Tang Wei, Suo Li. Prediction of short-term wind speed in wind farm based on chaotic phase fspace reconstruction theory[J]. Power System Protection and Control, 2010, 38(21): 113-117. [6] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E, 1994, 49(2): 1685-1689. [7] Peng C K, Havlin S, Stanley H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos, 1995, 5(1): 82-87. [8] Ivanova K, Ausloos M. Application of the detrended fluctuation analysis(DFA) method for describing cloud breaking[J]. Pyhsica A: Statistical Mechanics and Its Applications, 1999, 274(1-2): 349-354. [9] Telesca L, macchiato M. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis inves- tigated by the detrended fluctuation analysis of interevent time series[J]. Chaos, Solitions and Fractals, 2004, 19(2): 377-385. [10] Telesca L, Colangelo G, Lapenna V, et al. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis[J]. Physics Latters A, 2004, 332(5-6): 398-404. [11] Kantelhardt J W, Zechiegner S A, Koscielny B E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and its Applications, 2002, 316(1-4): 87-114. [12] 葛家怡, 周鹏, 赵欣, 等. 睡眠脑电信号的多重分形去势波动分析[J]. 天津大学学报, 2008, 41(10): 1148-1151. Ge Jiayi, Zhou Peng, Zhao Xin, et al. Multifractal detrended fluctuation analysis of sleep EEG signal[J]. Journal of Tianjin University, 2008, 41(10): 1148- 1151. [13] Barabasi A L, Vicsek T. Multifractality of self-affine fractals[J]. Physical Review A, 1991, 44: 2730-2733. [14] Bacry E, Delour J, Muzy J F. Multifractal random walk[J]. Physical Review E, 2001, 64: 0261032001. [15] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-range correlations with detrended fluctuation analysis[J]. Physica A: Statistical Mechanics and its Applications, 2001, 295(3-4): 441-454. [16] Vjushin D, Govindan R B, Monetti R A, et al. Scaling analysis of trends using DFA[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 302(1-4): 234-243. [17] 袁晓辉, 王云燕, 谢俊, 等. 电力市场中电价长程相关性的去趋势波动分析[J]. 华东电力, 2009, 37(6): 982-984. Yuan Xiaohui, Wang Yunyan, Xie Jun, et al. Detrended fluctuation analysis of electricity price for long-range correlation characteristics in electricity market[J]. East China Electric Power, 2009, 37(6): 982-984. [18] 袁平平, 于建玲, 商朋见. 股市时间序列的多重分形消除趋势分析[J]. 北京交通大学学报, 2007, 31(6): 69-72. Yuan Pingping, Yu Jianling, Shang Pengjian. Analysis of multi-fractal detrended fluctuation is stock market time series[J]. Journal of Beijing Jiaotong University, 2007, 31(6): 69-72. [19] 刘雁, 慕德俊, 张家忠. 基于多重分形谱的局域网流量预测[J]. 系统仿真学报, 2009, 21(12): 3743-3747. Liu Yan, Mu Dejun, Zhang Jiazhong. Traffic prediction for LAN based on multifractal spectrums[J]. Journal of System Simulation, 2009, 21(12): 3743-3747.