Abstract:A dead time should be considered in a PWM gate signal in order to avoid the short-circuit of inverter legs. Such a dead time causes some problems such as output voltage and current waveforms distortion. Based on the analysis of the effect of eliminating the dead-time, this paper proposes a novel dead time elimination method for single phase full bridge inverter which employs the three-level PWM control strategy. The presented method can eliminate the dead time clearly and implement a smooth transition through the whole cycle without a precise current polarity detection circuit. In addition, by using the IA as the search method for finding the optimal control sequences accord with the no dead time rules, the algorithm can optimize the quality of an output current waveform. Furthermore, an experimental platform based on DSP and FPGA is built. The simulation and experimental results verify the best dead time elimination control sequences generated by IA compared with the existing conventional control strategies, not only effectively and safely eliminate the effect of dead time, but also significantly reduce the THD of the output waveform.
[1] Mehrizi Sani A, Filizadeh S. An optimized space vector modulation sequence for improved harmonic performance[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 2895-2903. [2] Ming Z, Zhou M. Impact of zero-voltage notches on outputs of soft-switching pulse width modulation converters[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2345-2354. [3] Lai Y S, Shyu F S. Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects—Part I: basic development[J]. IEEE Transactions on Industry Applications, 2004, 40(6): 1605-1612. [4] Oliveira A C, Jacobina C B, Lima A M. Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies[J]. IEEE Transactions on Industrial Electronics, 2007, 54 (4): 2295-2304. [5] Urasaki N, Senjyu T, Uezatoand KT, et al. Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 271-280. [6] Kim H S, Moon H T, Youn M J. On-line dead-time compensation method using disturbance observer[J]. IEEE Transactions on Power Electronics, 2003, 18(6): 1336-1345. [7] Kim S Y, Park S Y. Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1768-1777. [8] 何正义, 季学武, 瞿文龙. 一种新颖的基于死区时间在线调整的SVPWM 补偿算法[J]. 电工技术学报, 2009, 24(6): 42-46. He Zhengyi, Ji Xuewu, Qu Wenlong. A novel SVPWM compensation strategy based on regulating dead time on-line[J]. Transactions of China Electrotechnical Society, 2009, 24(6): 42-46. [9] Choi J S, Yoo J Y, Lim S W, et al. A novel dead time minimization algorithm of the PWM inverter[C]. IEEE Institute for Advanced Studies, 1999, 20(4): 2188-2193. [10] Attaianese C, Nardi V, Tomasso G. A novel SVM strategy for VSI dead-time-effect reduction[J]. IEEE Transactions on Industry Applications, 2006, 41(6): 1667-1674. [11] Cho K M, OH W S, In C G. A new switching strategy for PWM power converters [C]. Proceedings of IEEE Power Electronics Specialists Conference, 2002, 1: 221-225. [12] Chen L H, Peng F Z. Dead-time elimination for voltage source inverters [J]. IEEE Transactions on Power Electronics, 2008, 23(2): 574-580. [13] Lin Y K, Lai Y S. Dead-time elimination of PWM controlled inverter/converter without separate power sources for current polarity detection circuit[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2121-2127. [14] 杨波, 吴建德, 李武华, 等. 在线自适应PWM 死区消除方法[J]. 电工技术学报, 2011, 26(11): 45-52. Yang Bo, Wu Jiande, Li Wuhua, et al. On-line adaptive dead-time elimination method for PWM voltage source inverters[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 45-52. [15] Wang Y, Gao Q, Cai X. Mixed PWM for dead-time elimination and compensation in a grid-tied Inverter[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4797-4803. [16] Ramachandran B, Srivastava S K, Edrington C S, et al. An intelligent auction scheme for smart grid market using a hybrid immune algorithm [J]. IEEE Transactions on Industrial Electronics. 2011, 58(10): 4603-4612. [17] 袁佳歆, 苏小芳, 陈柏超, 等. 基于免疫算法的三相逆变器最优空间矢量 PWM 控制[J]. 电工技术学报, 2009, 24(9): 114-119. Yuan Jiaxin, Su Xiaofang, Chen Baichao, et al. Optimum vector PWM strategy for three-phase inverter based on immune algorithm[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 114-119. [18] Yuan J X, Pan J B, Fei W L, et al. An immune algorithm based space-vector PWM control strategy in a three-phase inverter [J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 2084-2093. [19] Yuan J X, Chen B C, Rao B B, et al. Possible analogy between the optimal digital pulse width modulation technology and the equivalent optimisation problem[J]. IET Power Electronics, 2012, 5(7): 1026-1033. [20] 袁佳歆, 陈柏超, 田翠华, 等. 基于免疫算法的逆变器控制[J]. 中国电机工程学报, 2006, 26(5): 110-118. Yuan Jiaxin, Chen Baichao, Tian Cuihua, et al. The research of inverter’s control based on Immune genetic algorithm[J]. Proceedings of the CSEE, 2006, 26(5): 110-118.