Flashover Characteristic for High Altitude 500 kV Single-Circuit Transmission Line
Deng Wei1, Meng Gang1, 2, Chen Yong1, Zhang Rui1, Huo Feng3
1. State Grid Electric Power Research Institute Wuhan 430074 China 2. Wuhan University Wuhan 430072 China 3. China Electric Power Research Institute Wuhan 430074 China
Abstract:In the actual condition of high altitude, the up-and-down method was employed to investigate the switching impulse and lightning impulse discharge characteristics of the gaps between the bundled conductors and the tower of 500 kV single-circuit transmission lne, the switching impulse and lightning impulse discharge curves were obtained with the gaps of 2~5.5 m, and several altitude correction methods were used to calibrate and analyze the results to obtain the correction methods which is appropriate for transmission project. The experiments show that 50% lightning impulse voltages and 50 % switching impulse voltages are declining with increasing the altitudes, but the trend and degree of changes has a little notable differences; and the influence of altitude on the switching impulse flashover voltage obtains weaker with increasing of switching impulse voltage. By discussing the switching impulse and lightning impulse discharge under different altitude correction methods, It is proposed in this paper that the appropriate method is suited for correct the switching impulse and lightning impulse of 500 kV single -circuit transmission line at high altitude. According to the above conclusions, this work has enriched the research of external insulation characteristics of 500 kV single-circuit transmission line in actual high altitude area and can provide technical support for the external insulation design, operation and maintenance of 500 kV single -circuit transmission projects in high altitude area in China.
[1] 孙昭英, 罗兵, 李庆峰, 等.云广±800kV直流线路仿真塔空气间隙操作冲击放电特性[J]. 南方电网技术, 2010, 4(2): 52-55. Sun Zhaoying, Luo Bing, Li Qingfeng, et al. Switching impulse discharge characteristics of air clearance at simulation towers of Yunnan-Guang dong ±800kV DC transmission project[J]. Southern Power System Technology, 2010, 4(2): 52-55. [2] 王煊, 曹晓珑, 宿志一, 等. 特高压换流站空气间隙放电特性的海拔修正比较研究[J]. 电工技术学报, 2006, 21(6): 7-10. Wang Xuan, Cao Xiaolong, Su Zhiyi, et al. Altitude correction for breakdown voltages of air clearance in UHV converter stations[J]. Transactions of China Electro technical Society, 2006, 21(6): 7-10. [3] 张楚岩, 张福增, 陈昌龙, 等.高海拔地区直流特高压大尺寸复合外绝缘污闪特性研究[J]. 电工技术学报, 2012, 27(12): 20-28. Zhang Chuyan, Zuang Fuzeng, Chen Changlong, et al. Research on pollution flashover characteristics of large-size composite outdoor insulation for UHV DC in high altitude area[J]. Transactions of China Electro- technical Society, 2012, 27(12): 20-28. [4] 陈琴生, 译.绝缘实验方法手册[M]. 北京:水利电力出版社, 1987. [5] 马乃详. 长间隙放电[M]. 北京:中国电力出版社, 1998. [6] 王军. 低气压下棒-板空气间隙正极性操作冲击放电特性及校正的研究[D]. 重庆大学, 2006. [7] 霍锋, 万启发, 陈勇, 等.750kV双回紧凑型线路杆塔放电特性及绝缘配合[J]. 高电压技术, 2010, 36(5): 1172-1177. Huo Feng, Wan Qifa, Chen Yong, et al. Discharge characteristics and insulation co-ordination for 750kV double-circuit compact ac transmission line[J]. High Voltage Engineering, 2010, 36(5): 1172-1177. [8] GB/T 16927—1997高电压试验技术[S]. 北京: 国家技术监督局, 1997. [9] IEC60060.1—1994 高电压试验技术 第1部分 一般定义和试验要求[S], 1994. [10] 蒋兴良, 袁耀, 杜勇, 等.棒-板短空气间隙淋雨交流放电特性及电压校正[J]. 电工技术学报, 2012, 27(12): 36-42. Jiang Xingliang, Yuan Yao, Du Yong, et al. AC discharge characteristic and voltage correction of rod-plane short air gap under rain conditions[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 36-42. [11] 万启发, 霍锋, 谢梁, 等.长空气间隙放电特性研究综述[J]. 高电压技术, 2012, 38(10):2499-2505. Wan Qifa, Huo Feng, Xie Liang, et al .Summary of research on flashover characteristics of long air-gaps[J]. High Voltage Engineering, 2012, 38(10): 2499- 2505. [12] 殷勤, 郭洁, 严强, 等.外绝缘放电电压校正方法的分析与比较[J]. 电瓷避雷器, 2011(8):9-13. Yin Qin, Guo Jie, Yan Qiang, et al . Analysis and comparison to correction methods of discharge voltage of external insulation[J]. Insulators and Surge Arresters, 2011(8):9-13. [13] 杨迎建. 外绝缘试验电压与校正因数[J]. 高电压技术, 2003, 29(2): 9-10. Yang Yingjian. Test voltage and correction factor of external insulation[J]. High Voltage Engineering, 2003, 29(2): 9-10. [14] 万启发, 陈勇, 谷莉莉, 等. 高海拔外绝缘海拔校正因数的初步探讨[J]. 高电压技术, 2003, 29(5): 6, 51. Wan Qifa, Chen Yong, Gu Lili, et al. Preliminary discussion on altitude correction factors for external insulation in the high altitude[J]. High Voltage Engineering, 2003, 29(5): 6, 51. [15] 万启发, 陈勇, 孟刚, 等. 特高压交流变电设备相间操作冲击的放电特性[J]. 高电压技术, 2007, 33(11): 20-22. Wan Qifa, Chen Yong, Meng Gang et al. Phase-phase switching impulse discharge characteristic of uhv ac substation equipment[J]. High Voltage Engineering, 2007, 33(11): 20-22. [16] 谷琛, 张文亮, 范建斌, 等.棒-板间隙操作冲击放电电压的海拔校正[J]. 高电压技术, 2012, 38(1): 140-146. Gu Chen, Zhang Wenliang, fan Jianbin, et a1. Altitude correction of switching impulse flashover voltage of rod-plane air gap[J]. High Voltage Engineering, 2012, 38(1): 140-146. [17] 赵建宁, 陈 勇, 周文俊, 等. 500kV高海拔紧凑型输电线外绝缘特性及绝缘配合[J]. 高电压技术, 2009, 35(8): 1885-1890. Zhao Jianning, Chen Yong, Zhou Wenjun, et al. External insulation characteristic and insulation co-ordination for 500kV high altitude compact ac transmission line[J]. High Voltage Engineering, 2009, 35(8): 1885-1890. [18] 霍锋, 胡伟, 徐涛, 等. 1000kV交流紧凑型输电线路杆塔空气间隙放电特性[J]. 高电压技术, 2011, 37(8): 1875-1881. Huo Feng, Hu Wei, Xu Tao, et al. Air-gaps flashover characteristics for 1000kV AC compact tower[J]. High Voltage Engineering, 2011, 37(8): 1875-1881. [19] 陈勇, 孟刚, 谢梁, 等.750kV同塔双回输电线路空气间隙放电特性研究[J]. 高电压技术, 2008, 34(10):2118-2123. Chen Yong, Meng Gang, Xie Liang, et al. Research on air-gap discharge characteristics of 750 kV one tower double-circuit transmission line[J]. High Voltage Engineering, 2008, 34(10):2118-2123. [20] GB/T 311. 1—1997 高压输变电绝缘配合[S]. 北京: 国家技术监督局, 1997. [21] IEC60071—2—1996 Insulation coordination part 21. application guide[S], 1996. [22] 曹晶, 万启发, 张勤, 等.高海拔换流站相间操作冲击放电特性分析[J]. 高电压技术, 2010, 36(12): 2896-2901. [23] 孟刚, 文习山, 邓慰, 等. 高海拔地区500kV变电站典型电极外绝缘特性[J]. 高电压技术, 2013, 39(1): 67-74. Meng Gang, Wen Xishan, Deng Wei, et a1. External insulation characteristics of typical electrodes in 500kV substation at high altitudes[J]. High Voltage Engineering, 2013, 39(1): 67-74.