Stationary Frame Current Regulation of PWM Rectifiers Based on Predictive Control
Song Zhanfeng1, Xia Changliang1, 2, Gu Xin2
1. Tianjin University Tianjin 300072 China 2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China
Abstract:The finite control set model predictive control strategy can regulate α-and β-currents of pulse-width modulation (PWM) rectifiers. However, the main advantages are non-constant switching frequency and current ripples. This paper proposed a novel current regulation strategy of PWM rectifiers based on optimum time sequence in stationary frame. The proposed strategy selected active voltage vectors based on the location information of grid voltage vector. A cost function based on the current error was then constructed. The action time of each active vector was calculated by minimizing the cost function. The experimental results indicate that the proposed current control scheme achieves flexible current regulation in stationary frame, inheriting the merit of finite-state predictive control and realize the rapid dynamic response, but also ensure the constant switching frequency and improve the steady-state control effect.
宋战锋, 夏长亮, 谷鑫. 静止坐标系下基于最优时间序列的电压型PWM整流器电流预测控制[J]. 电工技术学报, 2013, 28(3): 234-240.
Song Zhanfeng, Xia Changliang, Gu Xin. Stationary Frame Current Regulation of PWM Rectifiers Based on Predictive Control. Transactions of China Electrotechnical Society, 2013, 28(3): 234-240.
[1] Buccella C, Cecati C, Latafat H. Digital control of power converters-a survey[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 437-447. [2] Dannehl J, Wessels C, Fuchs F W. Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 380-388. [3] 杨兴武, 姜建国. 电压型PWM整流器预测直接功率控制[J]. 中国电机工程学报, 2011, 31(3): 34-39. [4] 何英杰, 刘进军, 王兆安, 等. 基于重复预测原理的三电平APF无差拍控制方法[J]. 电工技术学报, 2010, 25(2): 114-133. [5] 尚磊, 孙丹, 胡家兵, 等. 三相电压型并网逆变器预测直接功率控制[J]. 电工技术学报, 2011, 26(7): 216-226, 229. [6] 胡雪峰, 龚春英. 光伏并网逆变器的直接预测控制策略及其DSP实现[J]. 电工技术学报, 2011, 26(s1): 102-106. [7] 王晶鑫, 姜建国. 基于预测算法和变结构的矩阵变换器驱动感应电机无差拍直接转矩控制[J]. 中国电机工程学报, 2010, 30(33): 65-70. [8] 赵方平, 杨勇, 阮毅, 等. 三相并网逆变器直接功率控制和直接功率预测控制的对比[J]. 电工技术学报, 2012, 27(7): 212-220. [9] 于蓉蓉, 魏学业, 吴小进, 等. 一种改进型预测电流控制算法[J]. 电工技术学报, 2010, 25(7): 100-107. [10] 牛里, 杨明, 刘可述, 等. 永磁同步电机电流预测控制算法[J]. 中国电机工程学报, 2012, 32(6): 131-137. [11] Xia C L, Wang M, Song Z F, et al. Robust model predictive current control of three-phase voltage source pwm rectifier with online disturbance observation[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 459-471. [12] 王宏佳, 徐殿国, 杨明. 永磁同步电机改进无差拍电流预测控制[J]. 电工技术学报, 2011, 26(6): 39-45. [13] Bouafia A, Gaubert J P, Krim F. Predictive Direct power control of three-phase pulsewidth modulation rectifier using space-vector modulation[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 228-236. [14] Geyer T, Papafotiou G, Morari M. Model predictive direct torque control—part Ⅰ: concept, algorithm and analysis[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1894-1905. [15] Papafotiou G, Kley J, Papdopoulos K, et al. Model predictive direct torque control—part Ⅱ: implementation and experimental evaluation[J]. IEEE Transac- tions on Industrial Electronics, 2009, 56(6): 1906- 1915. [16] Cortés P, Ortiz G, Yuz J I, et al. Model predictive control of an inverter with output LC filter for UPS applications[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1875-1883. [17] Lezana P, Aguilera R, Quevedo D E. Model pedictive control of an asymmetric flying capacitor converter[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1839-1846. [18] 杨勇, 赵方平, 阮毅, 等. 三相并网逆变器模型电流预测控制技术[J]. 电工技术学报, 2011, 26(6): 153-159. [19] Davari S A, Khaburi D A, Kennel R. An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1540-1551. [20] Cortés P, Rodriguez J, Silva C, et al. Delay compensation in model predictive current control of a three-phase inverter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1323-1325. [21] Kouro S, Cortés P, Vargas R, et al. Model predictive control—a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [22] Cortés P, Rodriguez J, Quevedo D E, et al. Predictive current control strategy with imposed load current spectrum[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 612-618. [23] Quevedo D E, Aguilera R P, Perez M A, et al. Model predictive control of an AFE rectifier with dynamic references[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3128-3136. [24] Perez M A, Rodriguez J, Fuentes E J, et al. Predictive control of AC-AC modular multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2832-2839. [25] Errouissi R, Ouhrouche M, Chen W, et al. Robust Nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function[J]. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2849-2858. [26] Lezana P, Aguilera R, Quevedo D. Steady-state issues with finite control set model predictive control[C]. International Conference on Industrial Electronics of IEEE, 2009: 1776-1781. [27] Cortés P, Kazmierkowski M P, Kennel R M, et al. Predictive control in power electronics and drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4312-4324. [28] Vazquez S, Leon J I, Franquelo L G, et al. Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors[C]. IEEE International Conference on Industrial Technology, 2009: 1-6.