Abstract:The damping capability of the wind turbines for power system oscillations is benefit to improve the stability of the power system with large wind power integration. In this paper, the reasons which cause the DC side voltage fluctuation of the full scale power converter of the direct driven permanent magnet synchronous generator(PMSG)-based wind turbines during grid disturbance are discussed firstly, and the solutions to control the dc voltage fluctuation are proposed, which ensures the wind turbines with stable operation and to provide power support to the grid quickly. And then, the principle of improving the system damping through the power regulation of the PMSG-based wind turbines is investigated, and the active and the reactive power damping control strategies are also proposed, respectively. Finally, a three-machine system with 30% wind power penetration is used to validate the proposed control strategies. The simulation results show that the PMSG-based wind turbines not only have the fault ride through ability but also have the fast respond ability to damp the power system oscillations using the presented control strategies, so that the damping characteristic of the power system is improved.
王毅, 张祥宇, 李和明, 朱晓荣. 永磁直驱风电机组对系统功率振荡的阻尼控制[J]. 电工技术学报, 2012, 27(12): 162-171.
Wang Yi, Zhang Xiangyu, Li Heming, Zhu Xiaorong. Damping Control of PMSG-Based Wind Turbines for Power System Oscillations. Transactions of China Electrotechnical Society, 2012, 27(12): 162-171.
[1] Müller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Application Magazine, 2002, 8(3): 26-33. [2] Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19 (4): 800-802. [3] Holdsworth L, Ekanayake J, Jenkins N. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy, 2004, 7(1): 21-35. [4] Lalor G, Mullane A, O’Malley M. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1905-1913. [5] 文贤馗, 钟晶亮, 钱进. 电网低频振荡时汽轮机控制策略研究[J]. 中国电机工程学报, 2009, 29(26): 107-111. Wen Xiankui, Zhong Jingliang, Qian Jin. Research on the control strategy for turbine on low-frequency oscillation[J]. Proceedings of CSEE, 2009, 29(26): 107-111. [6] 陈柔伊, 张尧, 蔡广林. PSS与HVDC调制器的在线协调控制策略[J]. 电网技术, 2009, 33(6): 29-32. Chen Rouyi, Zhang Yao, Cai Guanglin. On-line coordinated control strategy of PSS and HVDC modulation controllers[J]. Power System Technology, 2009, 33(6): 29-32. [7] 李国杰, 马锋. PSS与VSC-HVDC附加阻尼控制器参数协调优化设计[J]. 电网技术, 2009, 33(11): 39-43. Li Guofeng, Ma Feng. A coordinated tuning algorithm for power system stabilizer and supplementary damping controller of VSC-HVDC transmission system[J]. Power System Technology, 2009, 33(11): 39-43. [8] Li S H, Haskew T A, Xu L. Conventional and novel control designs for direct driven PMSG wind turbines[J]. Electric Power Systems Research, 2010, 80(4): 328-338. [9] 姚骏, 廖勇, 庄凯. 永磁直驱风电机组的双PWM变换器协调控制策略[J]. 电力系统自动化, 2008, 32(20): 88-92. Tang Jun, Liao Yong, Zhuang Kai. Coordinated control strategy of back-to-back PWM converter for permanent magnet direct-driven wind turbine[J]. Automation of Electric Power Systems, 2008, 32(20): 88-92. [10] 肖磊, 黄守道, 黄科元, 等. 不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制[J]. 电工技术学报, 2010, 25(7): 123-129. Xiao Lei, Huang Shoudao, Huang Keyuan, et al. DC voltage stability of directly-driven wind turbine with PM synchronous generator during the asymmetrical faults[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 123-129. [11] 李建林, 胡书举, 孔德国, 等. 全功率变流器永磁直驱风电系统低电压穿越特性研究[J]. 电力系统自动化, 2008, 32(19): 91-94. Li Jianlin, Hu Shuju, Kong Deguo, et al. Studies on the low voltage ride through capability of fully converted wind turbine with PMSG[J]. Automation of Electric Power Systems, 2008, 32(19): 91-94. [12] Rizo M, Rodriguez A, Bueno E. Low voltage ride-through of wind turbine based on interior permanent magnet synchronous generators sensorless vector controlled[C]. Energy Conversion Congress and Exposition, 2010: 2507-2514. [13] 王文亮, 葛宝明, 毕大强. 储能型直驱永磁同步风力发电控制系统[J]. 电力系统保护与控制, 2010, 38(14): 43-48. Wang Wenliang, Ge Baoming, Bi Daqiang. Energy storage based direct-drive permanent magnet synchronous wind power control system[J]. Power System Protection and Control, 2010, 38(14): 43-48. [14] Tsourakis G, Nomikos B M, Vournas C D. Contribution of Doubly Fed Wind Generators to Oscillation Damping[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 783-791. [15] Slootweg J G, Kling W L. The impact of large scale wind power generation on power system oscillations[J]. Electric Power Systems Research, 2003, 67(1): 9-20. [16] Hughes F M, Anaya Lara O, Jenkins N, et al. A power system stabilizer for DFIG-based wind generation. IEEE Transactions on Power Systems, 2006, 21(2): 763-772. [17] 赵仁德, 王永军, 张加胜. 直驱式永磁同步风力发电系统最大功率追踪控制[J]. 中国电机工程学报, 2009, 29(27): 106-111. Zhao Rende, Wang Yongjun, Huang Keyuan, et al. Maximum power point tracking control of the wind energy generation system with direct-driven permanent magnet synchronous generators[J]. Proceedings of the CSEE, 2009, 29(27): 106-111. [18] Kima H W, Kimb S S, Koa H S. Modeling and control of PMSG-based variable-speed wind turbine[J]. Electric Power Systems Research, 2010, 80(1): 46-52. [19] 叶杭冶. 风力发电机组的控制技术[M]. 北京: 机械工业出版社, 2009. [20] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [21] 龙源, 李国杰, 程林, 等. 利用光伏发电系统抑制电网功率振荡的研究[J]. 电网技术, 2006, 30(24): 44-49. Long Yuan, Li Guojie, Cheng Lin, et al. A study on damping power system oscillations based on photovoltaic system[J]. Power System Technology, 2006, 30(24): 44-49. [22] 马幼捷, 周雪松. 静止无功补偿器非线性控制对系统功角稳定的影响[J]. 中国电机工程学报, 2003, 23(12): 84-88. Ma Youjie, Zhou Xusong. Study on nonlinear SVC control for improving power system stability[J]. Proceedings of the CSEE, 2003, 23(12): 84-88.