Abstract:DC/DC series-parallel combined systems, in which multiple standardized converter modules are connected in series or parallel at the output and input sides, can be classified into four possible architectures. Each architecture has its own specific application areas. This paper analyzes the inherent relationships between the input voltage/current sharing and the output voltage/current sharing of the four combined systems and finds out the control objects for each system. For the input-parallel combined systems, both input currents sharing control and output currents sharing control (input-parallel output-parallel) or output voltages sharing control (input-parallel output-series) can be adopted. For the input-series combined systems, only input voltages sharing control can be adopted. Based on the analysis, a general control strategy for series-parallel combined systems is proposed, which decouples the input/output variables sharing control loops and output voltage control. Furthermore, the control strategy can achieve modularization architectures for series-parallel combined systems without added controller to regulate input/output variables sharing. A prototype composed of three full-bridge converters is built to validate the effectiveness of the proposed control strategy.
[1] Luo S. A review of distributed power systems part I: DC distributed power system[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 5-16. [2] Choi B. Dynamics and control of switchmode power conversions in distributed power systems[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1992. [3] Panov Y, Jovanovi M M. Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules[J]. IEEE Trans. Power Electron., 2002, 17(2): 172-179. [4] Manias S N, Kostakis G. Modular DC/DC converter for high-output voltage applications[J]. IEE Proc. B Electric Power Applications, 1993, 140(2): 97-102. [5] Kim J, You J, Cho B H. Modeling, control, and design of input-series-output-parallel connected converter for high-speed-train power system[J]. IEEE Trans. Ind. Electron., 2001, 48(3): 536-544. [6] Inoue S, Akagi H. A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system[J]. IEEE Trans. Power Electron., 2007, 22(2): 535-542. [7] Huang Y, Tse C K. Circuit theoretic classification of parallel connected dc-dc converters[J]. IEEE Trans. Circuits and Systems, 2007, 54(5): 1099-1108. [8] Ayyanar R, Giri R, Mohan N. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC/DC converters using dynamic input-reference scheme[J]. IEEE Trans. Power Electron., 2004, 19(6): 1462-1473. [9] Giri R, Choudhary V, Ayyanar R, et al. Common- duty-ratio control of input-series connected modular DC/DC converters with active input voltage and load-current sharing[J]. IEEE Trans. Ind. Appl., 2006, 42(4): 1101-1111. [10] Ruan X, Cheng L, Zhang T. Control strategy for input-series output-paralleled converter[C]. Proceeding of the IEEE PESC, Korea, Jeju, 2006: 238-245. [11] Giri R, Ayyanar R, Ledezma E. Input-series and output-series connected modular DC-DC converter with active input voltage and output voltage sharing[C]. Proceeding of the IEEE APEC, USA, California, 2004: 1751-1756. [12] 石健将, 严仰光, 何湘宁. 一种具有输入端电容均压的串-并型双管正激组合变换器研究[J]. 中国电机工程学报, 2004, 24(12): 92-97. [13] 马学军, 刘金红, 康勇. 输入串联输出并联的双全桥变换器输入电容均压问题的研究[J]. 中国电机工程学报, 2006, 26(16): 86-91. [14] Siri K, Willhoff M, Conner K. Uniform voltage distribution control for series connected DC/DC converters[J]. IEEE Trans. Power Electron., 2007, 22(4): 1269-1279. [15] Lin C, Chen C. Single-wire current share paralleling of current-mode-controlled DC power supplies[J]. IEEE Trans. Ind. Electron., 2000, 47(4): 780-786.