|
|
Research Progress on Plasma Catalysis and Its Applications in Power-to-X |
Li Tianyu1,2, Sun Jing1,2, Gao Yuting1,2, Qu Zhongping1,2, Zhou Renwu1,2 |
1. Centre for Plasma Biomedicine Xi'an Jiaotong University Xi'an 710049 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China |
|
|
Abstract Power-to-X (P2X) technology stands out as an emerging and promising innovation within the realm of renewable energy. It represents a valuable harnessing of renewable sources like solar and wind energy, steering them towards the creation of environmentally friendly, value-added clean energy, chemicals, and fuels. This approach significantly broadens the scope of sustainable energy systems by enhancing energy storage, transportation, and subsequent conversion processes, all rooted in renewable energy sources for power generation. P2X technology replaces traditional clean energy forms, such as hydrogen, ammonia, and liquid fuels derived from fossil fuels, with electricity generated from modern sources like wind and water. This substitution occurs across various industrial production processes, offering a pathway toward global industrial and social decarbonization while reducing greenhouse gas emissions. These capabilities are pivotal in advancing the cause of clean and low-carbon energy transformation. They not only hasten the development of non-fossil fuels but also drive national energy transformation and development, ultimately preserving the delicate balance of global energy systems. The emergence of atmospheric pressure low-temperature plasma technology presents a unique opportunity for the application of P2X technology. This technology offers flexibility, enabling convenient initiation and termination, making it well-suited for the intermittent and variable nature of renewable energy sources like wind and solar power. Therefore, it can be powered by renewable electricity, enabling the lightweight and distributed configuration of reactors. It excels at activating inert chemical molecules under mild conditions, thereby utilizing green electricity to convert various low or even negative-value substances, such as CO2, CH4, biomass, waste, and tar, into liquid or gaseous carbon-neutral fuels. These fuels are easily stored and utilized, contributing significantly to the realization of sustainable and low-carbon energy and chemistry. This article primarily focuses on the conversion of abundant natural gas small molecules (such as air, including N2 and O2, CO2, and CH4) into value-added chemicals, H2, synthesis gas, and ammonia, which serve as energy carriers. The synergistic mechanism of plasma catalyst was elaborated through a combination of theory and examples. The research status, bottlenecks, and future challenges of three typical plasma applications in P2X, including plasma-catalyzed CO2 conversion, plasma-catalyzed nitrogen fixation, and plasma-catalyzed CH4 reforming, were summarized. Finally, based on the current research status, the article analyzes the problems and challenges faced by the application of plasma catalysis in P2X technology. (1) Most research is still in the laboratory stage and uses a single reactor, which may encounter various problems during the expansion and integration process. (2) Insufficient understanding of the mechanism of the combination of plasma and catalyst. (3) It is difficult to achieve a suitable balance between energy consumption and conversion rate. It also proposes prospects for laboratory research and commercial implementation of plasma catalysis. In summary, atmospheric pressure low-temperature plasma technology provides a very promising method to overcome the limitations of other existing electric drive technologies, promote future energy and sustainable progress, and indirectly help reduce carbon dioxide emissions. This article aims to provide a valuable reference for researchers exploring its application research in P2X technology. We firmly believe that the combination of plasma technology and renewable energy can play an important role in future energy infrastructure.
|
Received: 25 September 2023
|
|
|
|
|
[1] Ennaert T, Van Aelst J, Dijkmans J, et al.Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chemical Society Reviews, 2016, 45(3): 584-611. [2] Du Lei, Zhang Gaixia, Liu Xianhu, et al.Biomass-derived nonprecious metal catalysts for oxygen reduction reaction: the demand-oriented engineering of active sites and structures[J]. Carbon Energy, 2020, 2(4): 561-581. [3] Bayatsarmadi B, Zheng Yao, Vasileff A, et al.Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion[J]. Small, 2017, 13(21): 1700191. [4] Conti J, Holtberg P, Diefenderfer J, et al.International energy outlook 2016 with projections to 2040[R]. Washington, DC: USDOE Energy Information Administration (EIA), Office of Energy Analysis, 2016. [5] Liang Hanfeng, Ming Fangwang, Alshareef H N.Excellence in energy: applications of plasma in energy conversion and storage materials[J]. Advanced Energy Materials, 2018, 8(29): 1870126. [6] 鲁娜, 张楚珂, 夏芸, 等. 等离子体转化CO2的研究进展[J]. 高电压技术, 2020, 46(1): 351-361. Lu Na, Zhang Chuke, Xia Yun, et al.Advances in plasma technology for CO2 conversion research[J]. High Voltage Engineering, 2020, 46(1): 351-361. [7] Appel A M, Bercaw J E, Bocarsly A B, et al.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. [8] De S, Dokania A, Ramirez A, et al.Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis, 2020, 10(23): 14147-14185. [9] Kondratenko E V, Mul G, Baltrusaitis J, et al.Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electro-catalytic processes[J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. [10] Kumar B, Llorente M, Froehlich J, et al.Photochemical and photoelectrochemical reduction of CO2[J]. Annual Review of Physical Chemistry, 2012, 63: 541-569. [11] Qiao Jinli, Liu Yuyu, Hong Feng, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. [12] 黑雪婷, 高远, 窦立广, 等. 纳秒脉冲介质阻挡放电等离子体驱动CH4-CH3OH转化制备液态化学品的特性研究[J]. 电工技术学报, 2022, 37(15): 3941-3950. Hei Xueting, Gao Yuan, Dou Liguang, et al.Study on plasma enhanced CH4-CH3OH conversion to liquid chemicals by nanosecond pulsed dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3941-3950. [13] Snoeckx R, Bogaerts A.Plasma technology-a novel solution for CO2 conversion?[J]. Chemical Society Reviews, 2017, 46(19): 5805-5863. [14] Shi Cong, Wang Sha, Ge Xiang, et al.A review of different catalytic systems for dry reforming of methane: conventional catalysis-alone and plasma-catalytic system[J]. Journal of CO2 Utilization, 2021, 46: 101462. [15] Adamovich I, Baalrud S D, Bogaerts A, et al.The 2017 plasma roadmap: low temperature plasma science and technology[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 323001. [16] Wang Zhao, Zhang Yao, Neyts E C, et al.Catalyst preparation with plasmas: how does it work?[J]. ACS Catalysis, 2018, 8(3): 2093-2110. [17] Khoja A H, Tahir M, Amin N A S. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J]. Energy Conversion and Management, 2019, 183: 529-560. [18] Wang Cheng, Li Dongning, Lu Zhongshan, et al.Synthesis of carbon nanoparticles in a non-thermal plasma process[J]. Chemical Engineering Science, 2020, 227: 115921. [19] Huczko A.Plasma chemistry and environmental protection: application of thermal and non-thermal plasmas[J]. Czechoslovak Journal of Physics, 1995, 45(12): 1023-1033. [20] Lee M Y, Nam J S, Seo J H.Synthesis of Ni-CeO2 catalyst for the partial oxidation of methane using RF thermal plasma[J]. Chinese Journal of Catalysis, 2016, 37(5): 743-749. [21] Pristavita R, Mendoza-Gonzalez N Y, Meunier J L, et al. Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology[J]. Plasma Chemistry and Plasma Processing, 2010, 30(2): 267-279. [22] Chen Huanhao, Mu Yibing, Xu Shanshan, et al.Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2010-2021. [23] Budhraja N, Pal A, Mishra R S.Plasma reforming for hydrogen production: pathways, reactors and storage[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2467-2482. [24] Conrads H, Schmidt M.Plasma generation and plasma sources[J]. Plasma Sources Science and Technology, 2000, 9(4): 441-454. [25] Zhou Zhipeng, Zhang Jimin, Ye Taohong, et al.Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor[J]. Chinese Science Bulletin, 2011, 56(20): 2162-2166. [26] Puliyalil H, Jurković D L, Dasireddy V D B C, et al. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels[J]. RSC Advances, 2018, 8(48): 27481-27508. [27] Zhang Hao, Wang Weizong, Li Xiaodong, et al.Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study[J]. Chemical Engineering Journal, 2018, 345: 67-78. [28] Feng Jiayu, Wang Fei, Wang Chi, et al.Cu/HZSM-5 sorbent treated by NH3 plasma for low-temperature simultaneous adsorption-oxidation of H2S and PH3[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24670-24681. [29] Soldatov S, Link G, Silberer L, et al.Time-resolved optical emission spectroscopy reveals nonequilibrium conditions for CO2 splitting in atmospheric plasma sustained with ultrafast microwave pulsation[J]. ACS Energy Letters, 2021, 6(1): 124-130. [30] Chung W C, Chang M B.CO2 reforming with CH4 via plasma catalysis system[M]//Karamé I, Shaya J, Srour H. Carbon Dioxide Chemistry, Capture and Oil Recovery. London: InTechOpen, 2018. [31] 车瑞, 孙明. 基于有限元法的气体放电模拟综述[J]. 电气技术, 2022, 23(7): 18-25, 80. Che Rui, Sun Ming.A review of gas discharge simulation based on finite element method[J]. Electrical Engineering, 2022, 23(7): 18-25, 80. [32] 丁蕴函, 王晓龙, 谭震宇, 等. 大气压He/O2等离子体活性粒子在水溶液中传质的氧含量效应[J]. 电工技术学报, 2023, 38(11): 2977-2988. Ding Yunhan, Wang Xiaolong, Tan Zhenyu, et al.Oxygen concentration effect on the mass transfer of reactive species of the atmospheric-pressure He/O2 plasma in aqueous solution[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2977-2988. [33] 商克峰, 曹无敌, 符梦辑. 电极结构对多孔陶瓷孔内微放电特性及苯降解的影响[J]. 电工技术学报, 2023, 38(6): 1687-1694. Shang Kefeng, Cao Wudi, Fu Mengji.Effect of electrode configuration on microdischarge characteristics in porous ceramics and benzene degradation[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1687-1694. [34] 周子凯, 卢旭, 王森, 等. 含二氧化钛的脉冲气液放电特性及降解四环素研究[J]. 电工技术学报, 2022, 37(22): 5862-5871, 5885. Zhou Zikai, Lu Xu, Wang Sen, et al.Characteristics of pulse gas-liquid discharge and tetracycline degradation with the addition of TiO2[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5862-5871, 5885. [35] Eliasson B, Kogelschatz U.Nonequilibrium volume plasma chemical processing[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1063-1077. [36] Feng Jiayu, Sun Xin, Li Zhao, et al.Plasma-assisted reforming of methane[J]. Advanced Science, 2022, 9(34): 2203221. [37] Wanten B, Maerivoet S, Vantomme C, et al.Dry reforming of methane in an atmospheric pressure glow discharge: confining the plasma to expand the performance[J]. Journal of CO2 Utilization, 2022, 56: 101869. [38] Kado S, Urasaki K, Sekine Y, et al.Direct conversion of methane to acetylene or syngas at room temperature using non-equilibrium pulsed discharge[J]. Fuel, 2003, 82(11): 1377-1385. [39] Gomez E, Rani D A, Cheeseman C R, et al.Thermal plasma technology for the treatment of wastes: a critical review[J]. Journal of Hazardous Materials, 2009, 161(2/3): 614-626. [40] Tang L, Huang H, Hao H, et al.Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal[J]. Journal of Electrostatics, 2013, 71(5): 839-847. [41] Neyts E C, Ostrikov K, Sunkara M K, et al.Plasma catalysis: synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. [42] Bogaerts A, Tu Xin, Whitehead J C, et al.The 2020 plasma catalysis roadmap[J]. Journal of Physics D: Applied Physics, 2020, 53(44): 443001. [43] Brandenburg R, Bogaerts A, Bongers W, et al.White paper on the future of plasma science in environment, for gas conversion and agriculture[J]. Plasma Processes and Polymers, 2019, 16(1): 1700238. [44] Winter L R, Chen J G.N2 fixation by plasma-activated processes[J]. Joule, 2021, 5(2): 300-315. [45] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [46] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [47] George A, Shen Boxiong, Craven M, et al.A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 109702. [48] Tran Q C, Dao V D, Kim H Y, et al.Pt-based alloy/carbon black nanohybrid covered with ionic liquid supramolecules as an efficient catalyst for oxygen reduction reactions[J]. Applied Catalysis B: Environmental, 2017, 204: 365-373. [49] Wang Qinqin, Zhang Sudi, Yu Youzhu, et al.High-performance of plasma-enhanced Zn/MCM-41 catalyst for acetylene hydration[J]. Catalysis Communications, 2020, 147: 106122. [50] Guo Fang, Cao Wuyi, Wang L, et al.High activity and strong coke resistance of nickel CO2-CH4 reforming catalyst promoted by different plasma treated modes[J]. Molecular Catalysis, 2023, 535: 112821. [51] Tao Xumei, Bai Meigui, Li Xiang, et al.CH4-CO2 reforming by plasma - challenges and opportunities[J]. Progress in Energy and Combustion Science, 2011, 37(2): 113-124. [52] Hu Shaozheng, Li Fayun, Fan Zhiping, et al.Improved photocatalytic hydrogen production property over Ni/NiO/N-TiO2-x heterojunction nanocomposite prepared by NH3 plasma treatment[J]. Journal of Power Sources, 2014, 250: 30-39. [53] Wu Yiwei, Chung W C, Chang M B.Modification of Ni/γ-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8071-8080. [54] Zhao Binran, Yan Xiaoliang, Zhou You, et al.Effect of catalyst structure on growth and reactivity of carbon nanofibers over Ni/MgAl2O4[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8182-8188. [55] Brault P, Thomann A L, Cavarroc M.Theory and molecular simulations of plasma sputtering, transport and deposition processes[J]. The European Physical Journal D, 2023, 77(2): 19. [56] Neyts E C.Plasma-surface interactions in plasma catalysis[J]. Plasma Chemistry and Plasma Processing, 2016, 36(1): 185-212. [57] Eckstein W, Garciá-Rosales C, Roth J, et al.Threshold energy for sputtering and its dependence on angle of incidence[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 83(1/2): 95-109. [58] Sakai Y, Takeda K, Hiramatsu M. Graphene growth in microwave-excited atmospheric pressure remote plasma enhanced chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2022, 61(SA): SA1018. [59] Chen Huanhao, Mu Yibing, Shao Yan, et al.Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation[J]. Catalysis Science & Technology, 2019, 9(15): 4135-4145. [60] Lee H, Lee D H, Ha J M, et al.Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO2 and subsequent regeneration at low temperature[J]. Applied Catalysis A: General, 2018, 557: 39-45. [61] Kasinathan P, Park S, Choi W C, et al.Plasma-enhanced methane direct conversion over particle-size adjusted MOx/Al2O3 (M = Ti and Mg) catalysts[J]. Plasma Chemistry and Plasma Processing, 2014, 34(6): 1317-1330. [62] Xue Zhuowen, Liu Jinglin, Zhang Zhiyuan, et al.Mechanism study on gliding arc (GA) plasma reforming: reaction and energy pathways for H2 production from methanol steam reforming[J]. Chemical Engineering Journal, 2023, 462: 142319. [63] Whitehead J C.Plasma-catalysis: is it just a question of scale?[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 264-273. [64] Wang Li, Zhao Yue, Liu Chunyang, et al.Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning[J]. Chemical Communications, 2013, 49(36): 3787-3789. [65] Kim J, Go D B, Hicks J C.Synergistic effects of plasma-catalyst interactions for CH4 activation[J]. Physical Chemistry Chemical Physics, 2017, 19(20): 13010-13021. [66] Yu Shuang, Liang Yongdong, Sun Shujun, et al.Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering[J]. PLoS One, 2013, 8(4): e59974. [67] Rafiq M H, Jakobsen H A, Hustad J E.Modeling and simulation of catalytic partial oxidation of methane to synthesis gas by using a plasma-assisted gliding arc reactor[J]. Fuel Processing Technology, 2012, 101: 44-57. [68] Tirumala R, Benard N, Moreau E, et al.Temperature characterization of dielectric barrier discharge actuators: influence of electrical and geometric parameters[J]. Journal of Physics D: Applied Physics, 2014, 47(25): 255203. [69] Collison W Z, Ni T Q, Barnes M S.Studies of the low-pressure inductively-coupled plasma etching for a larger area wafer using plasma modeling and Langmuir probe[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(1): 100-107. [70] Sharma U, Sharma S C.Impact of plasma process parameters on the growth of vertically aligned carbon nanotube array and its optimization as field emitters[J]. The European Physical Journal Plus, 2022, 137(7): 823. [71] Gadkari S, Gu Sai.Influence of catalyst packing configuration on the discharge characteristics of dielectric barrier discharge reactors: a numerical investigation[J]. Physics of Plasmas, 2018, 25(6): 063513. [72] Chen H L, Lee H M, Chen S H, et al.Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1/2): 1-9. [73] Tu Xin, Gallon H J, Twigg M V, et al.Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274007. [74] Van Durme J, Dewulf J, Leys C, et al.Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333. [75] Tu Xin, Whitehead J C.Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125: 439-448. [76] Tu Xin, Gallon H J, Whitehead J C.Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO2[J]. Journal of Physics D: Applied Physics, 2011, 44(48): 482003. [77] Wang Baowei, Li Xiaoyan, Wang Xiaoxi, et al.Effect of filling materials on CO2 conversion with a dielectric barrier discharge reactor[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106370. [78] Ray D, Chawdhury P, Bhargavi K V S S, et al. Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation[J]. Journal of CO2 Utilization, 2021, 44: 101400. [79] Michielsen I, Uytdenhouwen Y, Pype J, et al.CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis[J]. Chemical Engineering Journal, 2017, 326: 477-488. [80] Eliasson B, Liu Changjun, Kogelschatz U.Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1221-1227. [81] Song H K, Choi J W, Yue S H, et al.Synthesis gas production via dielectric barrier discharge over Ni/γ-Al2O3 catalyst[J]. Catalysis Today, 2004, 89(1/2): 27-33. [82] Gao Yuan, Dou Liguang, Zhang Shuai, et al.Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation[J]. Chemical Engineering Journal, 2021, 420: 127693. [83] Umamaheswara Rao M, Bhargavi K V S S, Chawdhury P, et al. Non-thermal plasma assisted CO2 conversion to CO: influence of non-catalytic glass packing materials[J]. Chemical Engineering Science, 2023, 267: 118376. [84] Li Haijing, Toschi F.Plasma-induced catalysis: towards a numerical approach[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2020, 378(2175): 20190396. [85] Gadkari S, Tu Xin, Gu Sai.Fluid model for a partially packed dielectric barrier discharge plasma reactor[J]. Physics of Plasmas, 2017, 24(9): 093510. [86] VanβLaer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor[J]. Energy Technology, 2015, 3(10): 1038-1044. [87] Kaliyappan P, Paulus A, D’Haen J, et al. Probing the impact of material properties of core-shell SiO2@TiO2 spheres on the plasma-catalytic CO2 dissociation using a packed bed DBD plasma reactor[J]. Journal of CO2 Utilization, 2021, 46: 101468. [88] Mei Danhua, Tu Xin.Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor[J]. ChemPhys-Chem, 2017, 18(22): 3253-3259. [89] Zhang Diyu, Huang Qiang, Devid E J, et al.Tuning of conversion and optical emission by electron temperature in inductively coupled CO2 plasma[J]. The Journal of Physical Chemistry C, 2018, 122(34): 19338-19347. [90] Zhang Hao, Li Li, Xu Ruiyang, et al.Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor[J]. Waste Disposal & Sustainable Energy, 2020, 2(2): 139-150. [91] Shukrullah S, Ayyaz M, Naz M Y, et al.Post-synthesis plasma processing and activation of TiO2 photocatalyst for the removal of synthetic dyes from industrial wastewater[J]. Applied Physics A, 2021, 127(5): 307. [92] Huang Qiang, Liang Zhiyu, Qi Fei, et al.Carbon dioxide conversion synergistically activated by dielectric barrier discharge plasma and the CsPbBr3@TiO2 photocatalyst[J]. The Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. [93] Beckerle J D, Yang Q Y, Johnson A D, et al.Collision-induced dissociative chemisorption of adsorbates: chemistry with a hammer[J]. The Journal of Chemical Physics, 1987, 86(12): 7236-7237. [94] Beckerle J D, Johnson A D, Yang Q Y, et al.Collision induced dissociative chemisorption of CH4 on Ni(111) by inert gas atoms: the mechanism for chemistry with a hammer[J]. The Journal of Chemical Physics, 1989, 91(9): 5756-5777. [95] Cheng He, Liu Dawei, Ostrikov K.Synergistic CO2 plasma catalysis: CO production pathways and effects of vibrationally excited species[J]. Journal of CO2 Utilization, 2021, 54: 101763. [96] 张晓星, 周畅, 崔兆仑, 等. 填充颗粒尺寸对介质阻挡放电降解SF6的影响[J]. 电工技术学报, 2022, 37(18): 4766-4776. Zhang Xiaoxing, Zhou Chang, Cui Zhaolun, et al.Effect of particle size on degradation of SF6 by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4766-4776. [97] 陈慧敏, 段戈辉, 梅丹华, 等. 气体添加对水电极同轴介质阻挡放电直接分解CO2的影响[J]. 电工技术学报, 2023, 38(1): 270-280. Chen Huimin, Duan Gehui, Mei Danhua, et al.Effect of gas addition on CO2 decomposition in a coaxial dielectric barrier discharge reactor with water electrode[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 270-280. [98] Salden A, Budde M, Garcia-Soto C A, et al. Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database[J]. Journal of Energy Chemistry, 2023, 86: 318-342. [99] Ashford B, Tu Xin.Non-thermal plasma technology for the conversion of CO2[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 45-49. [100] Liu Miao, Yi Yanhui, Wang Li, et al.Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis[J]. Catalysts, 2019, 9(3): 275. [101] Nunnally T, Gutsol K, Rabinovich A, et al.Dissociation of CO2 in a low current gliding arc plasmatron[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274009. [102] Bogaerts A, Kozák T, van Laer K, et al. Plasma-based conversion of CO2: current status and future challenges[J]. Faraday Discussions, 2015, 183: 217-232. [103] Mei Danhua, Tu Xin.Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design[J]. Journal of CO2 Utilization, 2017, 19: 68-78. [104] Aerts R, Somers W, Bogaerts A.Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study[J]. ChemSusChem, 2015, 8(4): 702-716. [105] Taghvaei H, Pirzadeh E, Jahanbakhsh M, et al.Polyurethane foam: a novel support for metal oxide packing used in the non-thermal plasma decomposition of CO2[J]. Journal of CO2 Utilization, 2021, 44: 101398. [106] Bongers W, Bouwmeester H, Wolf B, et al.Plasma-driven dissociation of CO2 for fuel synthesis[J]. Plasma Processes and Polymers, 2017, 14(6): 1600126. [107] Sun Surong, Wang Haixing, Mei Danhua, et al.CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling[J]. Journal of CO2 Utilization, 2017, 17: 220-234. [108] 陈霁, 时亚琴, 梅丹华, 等. 不同气体成分添加对氮气滑动弧放电模式及特性的影响[J]. 高电压技术, 2022, 48(9): 3794-3803. Chen Ji, Shi Yaqin, Mei Danhua, et al.Effects of different gas compositions on the mode and characteristics of nitrogen gliding arc discharge[J]. High Voltage Engineering, 2022, 48(9): 3794-3803. [109] Vertongen R, Bogaerts A.How important is reactor design for CO2 conversion in warm plasmas?[J]. Journal of CO2 Utilization, 2023, 72: 102510. [110] Wang Jiajie, Wang Xiaoxing, AlQahtani M S, et al. Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation[J]. Chemical Engineering Journal, 2023, 451: 138661. [111] Dong Chunyang, Li Yinlong, Cheng Danyang, et al.Supported metal clusters: fabrication and application in heterogeneous catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045. [112] Cui Zhaolun, Meng Shengyan, Yi Yanhui, et al.Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism[J]. ACS Catalysis, 2022, 12(2): 1326-1337. [113] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 1329-1337. Wang Xiaoling, Gao Yuan, Zhang Shuai, et al.Effects of pulse parameters on dry reforming of CH4 by pulsed DBD plasma[J]. Transactions of China Electro-technical Society, 2019, 34(6): 1329-1337. [114] 孙闵杰, 付军辉, 刘泓麟, 等. 分段电极介质阻挡放电CO2重整CH4过程放电特性与反应性能研究[J]. 电工技术学报, 2023, 38(15): 3972-3983. Sun Minjie, Fu Junhui, Liu Honglin, et al.Discharge characteristics and reaction performance of CH4 reforming with CO2 in dielectric barrier discharge with segmented electrodes[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3972-3983. [115] Zhu Mingrui, Zhong An, Dai Dong, et al.Surface-induced gas-phase redistribution effects in plasma-catalytic dry reforming of methane: numerical investigation by fluid modeling[J]. Journal of Physics D: Applied Physics, 2022, 55(35): 355201. [116] Brune L, Ozkan A, Genty E, et al.Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration[J]. Journal of Physics D: Applied Physics, 2018, 51(23): 234002. [117] Martin-del-Campo J, Uceda M, Coulombe S, et al. Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc-spouted bed reactor[J]. Journal of CO2 Utilization, 2021, 46: 101474. [118] Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. [119] Smil V.Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415. [120] Guo Jianping, Chen Ping.Ammonia history in the making[J]. Nature Catalysis, 2021, 4(9): 734-735. [121] Kyriakou V, Garagounis I, Vourros A, et al.An electrochemical haber-bosch process[J]. Joule, 2020, 4(1): 142-158. [122] Bartholomew C H, Farrauto R J.Fundamentals of Industrial Catalytic Processes[M]. 2nd ed. Hoboken: John Wiley & Sons, 2011. [123] Mehta P, Barboun P M, Engelmann Y, et al.Plasma-catalytic ammonia synthesis beyond the equilibrium limit[J]. ACS Catalysis, 2020, 10(12): 6726-6734. [124] 陈赦, 刘红梅, 吴婷, 等. 低温等离子体增强催化氨合成机理的一维流体动力学模型[J]. 电工技术学报, 2021, 36(13): 2730-2739. Chen She, Liu Hongmei, Wu Ting, et al.1D fluid model of catalytic ammonia synthesis enhanced by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2730-2739. [125] Huang Zhongzheng, Xiao Ao, Liu Dawei, et al.Plasma-water-based nitrogen fixation: status, mechanisms, and opportunities[J]. Plasma Processes and Polymers, 2022, 19(4): 2100198. [126] Wang Yaolin, Yang Wenjie, Xu Shanshan, et al.Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis[J]. Journal of the American Chemical Society, 2022, 144(27): 12020-12031. [127] Winter L R, Ashford B, Hong J, et al.Identifying surface reaction intermediates in plasma catalytic ammonia synthesis[J]. ACS Catalysis, 2020, 10(24): 14763-14774. [128] Muzammil I, Kim Y N, Kang H, et al.Plasma catalyst-integrated system for ammonia production from H2O and N2 at atmospheric pressure[J]. ACS Energy Letters, 2021, 6(8): 3004-3010. [129] Hong J, Zhang Tianqi, Zhou Renwu, et al.Green chemical pathway of plasma synthesis of ammonia from nitrogen and water: a comparative kinetic study with a N2/H2 system[J]. Green Chemistry, 2022, 24(19): 7458-7468. [130] Jardali F, van Alphen S, Creel J, et al. NOx production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation[J]. Green Chemistry, 2021, 23(4): 1748-1757. [131] van Alphen S, Ahmadi Eshtehardi H, O'Modhrain C, et al. Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor[J]. Chemical Engineering Journal, 2022, 443: 136529. [132] Sun Jing, Zhang Tianqi, Hong J, et al.Insights into plasma-catalytic nitrogen fixation from catalyst microanalysis and chemical kinetics modelling[J]. Chemical Engineering Journal, 2023, 469: 143841. [133] 邝勇, 章程, 胡修翠, 等. 纳秒脉冲液相放电耦合微气泡固氮影响因素分析[J]. 电工技术学报, 2023, 38(15): 3960-3971. Kuang Yong, Zhang Cheng, Hu Xiucui, et al.Factors influencing nitrogen fixation by microbubbles coupled with nanosecond-pulse liquid phase discharges[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3960-3971. [134] Sun Jing, Alam D, Daiyan R, et al.A hybrid plasma electrocatalytic process for sustainable ammonia production[J]. Energy & Environmental Science, 2021, 14(2): 865-872. [135] Scapinello M, Delikonstantis E, Stefanidis G D.The panorama of plasma-assisted non-oxidative methane reforming[J]. Chemical Engineering and Processing: Process Intensification, 2017, 117: 120-140. [136] Geng Feiyang, Haribal V P, Hicks J C.Non-thermal plasma-assisted steam methane reforming for electrically-driven hydrogen production[J]. Applied Catalysis A: General, 2022, 647: 118903. [137] Soltani R, Rosen M A, Dincer I.Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20266-20275. [138] Ghanbari M, Binazadeh M, Zafarnak S, et al.Hydrogen production via catalytic pulsed plasma conversion of methane: effect of Ni-K2O/Al2O3 loading, applied voltage, and argon flow rate[J]. International Journal of Hydrogen Energy, 2020, 45(27): 13899-13910. [139] Khalifeh O, Taghvaei H, Mosallanejad A, et al.Extra pure hydrogen production through methane decomposition using nanosecond pulsed plasma and Pt-Re catalyst[J]. Chemical Engineering Journal, 2016, 294: 132-145. [140] Wnukowski M, van de Steeg A W, Hrycak B, et al. Influence of hydrogen addition on methane coupling in a moderate pressure microwave plasma[J]. Fuel, 2021, 288: 119674. [141] Huang Bangdou, Zhang Cheng, Bai Han, et al.Energy pooling mechanism for catalyst-free methane activation in nanosecond pulsed non-thermal plasmas[J]. Chemical Engineering Journal, 2020, 396: 125185. [142] Gao Yuan, Zhang Shuai, Sun Hao, et al.Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges[J]. Applied Energy, 2018, 226: 534-545. [143] Hu Xiucui, Liu Yadi, Dou Liguang, et al.Plasma enhanced anti-coking performance of Pd/CeO2 catalysts for the conversion of methane[J]. Sustainable Energy & Fuels, 2022, 6(1): 98-109. [144] Chawdhury P, Bhanudas Rawool S, Umamaheswara Rao M, et al.Methane decomposition by plasma-packed bed non-thermal plasma reactor[J]. Chemical Engineering Science, 2022, 258: 117779. [145] Maluf S S, Assaf E M.Effects of the partial replacement of La by M (M=Ce, Ca and Sr) in La2-xMxCuO4 perovskites on catalysis of the water-gas shift reaction[J]. Journal of Natural Gas Chemistry, 2010, 19(6): 567-574. [146] Chawdhury P, Ray D, Vinodkumar T, et al.Catalytic DBD plasma approach for methane partial oxidation to methanol under ambient conditions[J]. Catalysis Today, 2019, 337: 117-125. [147] Zhou Junshuang, Zhou Juncheng, Xu Yue, et al.Control of methane plasma oxidative pathways by altering the contribution of oxygen species[J]. Fuel, 2021, 284: 118944. [148] Hrabovsky M, Hlina M, Kopecky V, et al.Steam plasma methane reforming for hydrogen production[J]. Plasma Chemistry and Plasma Processing, 2018, 38(4): 743-758. [149] Zhu Xiaobing, Liu Xiaoyu, Lian Haoyu, et al.Plasma catalytic steam methane reforming for distributed hydrogen production[J]. Catalysis Today, 2019, 337: 69-75. |
|
|
|