Transactions of China Electrotechnical Society  2024, Vol. 39 Issue (17): 5461-5481    DOI: 10.19595/j.cnki.1000-6753.tces.231580
Current Issue| Next Issue| Archive| Adv Search |
Research Progress on Plasma Catalysis and Its Applications in Power-to-X
Li Tianyu1,2, Sun Jing1,2, Gao Yuting1,2, Qu Zhongping1,2, Zhou Renwu1,2
1. Centre for Plasma Biomedicine Xi'an Jiaotong University Xi'an 710049 China;
2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China

Download: PDF (14579 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Power-to-X (P2X) technology stands out as an emerging and promising innovation within the realm of renewable energy. It represents a valuable harnessing of renewable sources like solar and wind energy, steering them towards the creation of environmentally friendly, value-added clean energy, chemicals, and fuels. This approach significantly broadens the scope of sustainable energy systems by enhancing energy storage, transportation, and subsequent conversion processes, all rooted in renewable energy sources for power generation. P2X technology replaces traditional clean energy forms, such as hydrogen, ammonia, and liquid fuels derived from fossil fuels, with electricity generated from modern sources like wind and water. This substitution occurs across various industrial production processes, offering a pathway toward global industrial and social decarbonization while reducing greenhouse gas emissions. These capabilities are pivotal in advancing the cause of clean and low-carbon energy transformation. They not only hasten the development of non-fossil fuels but also drive national energy transformation and development, ultimately preserving the delicate balance of global energy systems.
The emergence of atmospheric pressure low-temperature plasma technology presents a unique opportunity for the application of P2X technology. This technology offers flexibility, enabling convenient initiation and termination, making it well-suited for the intermittent and variable nature of renewable energy sources like wind and solar power. Therefore, it can be powered by renewable electricity, enabling the lightweight and distributed configuration of reactors. It excels at activating inert chemical molecules under mild conditions, thereby utilizing green electricity to convert various low or even negative-value substances, such as CO2, CH4, biomass, waste, and tar, into liquid or gaseous carbon-neutral fuels. These fuels are easily stored and utilized, contributing significantly to the realization of sustainable and low-carbon energy and chemistry.
This article primarily focuses on the conversion of abundant natural gas small molecules (such as air, including N2 and O2, CO2, and CH4) into value-added chemicals, H2, synthesis gas, and ammonia, which serve as energy carriers. The synergistic mechanism of plasma catalyst was elaborated through a combination of theory and examples. The research status, bottlenecks, and future challenges of three typical plasma applications in P2X, including plasma-catalyzed CO2 conversion, plasma-catalyzed nitrogen fixation, and plasma-catalyzed CH4 reforming, were summarized. Finally, based on the current research status, the article analyzes the problems and challenges faced by the application of plasma catalysis in P2X technology. (1) Most research is still in the laboratory stage and uses a single reactor, which may encounter various problems during the expansion and integration process. (2) Insufficient understanding of the mechanism of the combination of plasma and catalyst. (3) It is difficult to achieve a suitable balance between energy consumption and conversion rate. It also proposes prospects for laboratory research and commercial implementation of plasma catalysis.
In summary, atmospheric pressure low-temperature plasma technology provides a very promising method to overcome the limitations of other existing electric drive technologies, promote future energy and sustainable progress, and indirectly help reduce carbon dioxide emissions. This article aims to provide a valuable reference for researchers exploring its application research in P2X technology. We firmly believe that the combination of plasma technology and renewable energy can play an important role in future energy infrastructure.
Key wordsAtmospheric pressure low-temperature plasma      plasma-catalysis      Power-to-X      synergistic effect      energy efficiency     
Received: 25 September 2023     
PACS: TM8  
  O539  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Li Tianyu
Sun Jing
Gao Yuting
Qu Zhongping
Zhou Renwu
Cite this article:   
Li Tianyu,Sun Jing,Gao Yuting等. Research Progress on Plasma Catalysis and Its Applications in Power-to-X[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5461-5481.
URL:  
https://dgjsxb.ces-transaction.com/EN/10.19595/j.cnki.1000-6753.tces.231580     OR     https://dgjsxb.ces-transaction.com/EN/Y2024/V39/I17/5461
Copyright © Transactions of China Electrotechnical Society
Supported by: Beijing Magtech