|
|
Optimization Model of Charging Microgrid Interconnection System Considering Dynamic Constraints of Energy Supply Reliability and Carbon Emission Reduction |
Yan Jiajia1, Teng Yun1, Qiu Shi1, Chen Zhe2 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. Depth Energy Technology Aalborg University Aalborg DK-9220 Denmark |
|
|
Abstract Promoting the large-scale development of the new energy vehicle industry is an important way to realize the low-carbon transformation of transportation and multi-energy systems. In order to ensure the improvement of system energy supply reliability and carbon emission reduction capability, an optimization model of charging microgrid interconnection system considering dynamic constraints of energy supply reliability and carbon emission reduction was constructed in this paper. Firstly, the operation characteristics of each microgrid and the energy interaction characteristics between microgrids are studied, and the model of the multi-energy charging microgrids interconnection system with low carbon emissions(MCMIS-LCEs) was established. On this basis, a multi-energy supply and carbon emission reduction coordination model was established; Secondly, considering the dynamic impact of energy conversion, storage and charging equipment failures on the energy supply reliability of the MCMIS-LCEs, a multi-state reliability dynamic quantitative evaluation model was established according to the characteristics of equipment failures; Then, under the conditions of energy supply reliability constraints and operation constraints of interconnected systems, a multi-objective optimization model of the MCMIS-LCEs considering carbon emission reduction, charging time and energy supply cost coordination was established; Finally, simulation verification is performed based on the actual energy and vehicle flow data of the charging station. The simulation results demonstrate that the MCMIS-LCEs and its optimization model proposed in this paper can realize the efficient coordination between multi-energy conversion, storage and charging equipment, and improve the economy, carbon emission reduction capacity, waste process capacity, grid regulation capacity, and the reliability of energy supply of the whole interconnected system.
|
Received: 21 January 2022
|
|
|
|
|
[1] 许刚, 张丙旭, 张广超. 电动汽车集群并网的分布式鲁棒优化调度模型[J]. 电工技术学报, 2021, 36(3): 565-578. Xu Gang, Zhang Bingxu, Zhang Guangchao.Distributed and robust optimal scheduling model for large-scale electric vehicles connected to grid[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 565-578. [2] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. Zhang Shenxi, Wang Danyang, Cheng Haozhong, et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. [3] 王泽镝, 滕云, 闫佳佳, 等. 垃圾能源利用与城市多能源系统协同优化模型[J]. 电工技术学报, 2021, 36(21): 4470-4481. Wang Zedi, Teng Yun, Yan Jiajia, et al.The optimal model based on waste resourceful and urban multi-energy system collaborative[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4470-4481. [4] 滕云, 闫佳佳, 回茜, 等. “无废”电-氢充能服务区多源微网优化运行模型[J]. 中国电机工程学报, 2021, 41(6): 2074-2088. Teng Yun, Yan Jiajia, Hui Qian, et al.Optimization operation model of “zero-waste” electricity-hydrogen charging service area multi-energy microgrid[J]. Proceedings of the CSEE, 2021, 41(6): 2074-2088. [5] 王泽森, 唐艳梅, 门向阳, 等. 独立海岛终端一体化系统下电动汽车的投放数量规划研究[J]. 中国电机工程学报, 2019, 39(7): 2005-2016. Wang Zesen, Tang Yanmei, Men Xiangyang, et al.Research on the quantity planning of electric vehicle on the isolated island terminal integration system[J]. Proceedings of the CSEE, 2019, 39(7): 2005-2016. [6] 郭立东, 雷鸣宇, 杨子龙, 等. 光储微网系统多目标协调控制策略[J]. 电工技术学报, 2021, 36(19): 4121-4131. Guo Lidong, Lei Mingyu, Yang Zilong, et al.Multi-objective coordinated control strategy for photovoltaic and energy-storage microgrid system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4121-4131. [7] 王泽镝, 滕云, 回茜, 等. 考虑垃圾处理与调峰需求的可持续化城市多能源系统规划[J]. 中国电机工程学报, 2021, 41(11): 3781-3796. Wang Zedi, Teng Yun, Hui Qian, et al.A sustainable development multi-energy system planning method incorporating the demand of waste disposal and peak shaving[J]. Proceedings of the CSEE, 2021, 41(11): 3781-3796. [8] Alshareef M, Lin Zhengyu, Li Fulong, et al.A grid interface current control strategy for DC microgrids[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 249-256. [9] 张释中, 裴玮, 杨艳红, 等. 基于柔性直流互联的多微网集成聚合运行优化及分析[J]. 电工技术学报, 2019, 34(5): 1025-1037. Zhang Shizhong, Pei Wei, Yang Yanhong, et al.Optimization and analysis of multi-microgrids integration and aggregation operation based on flexible DC interconnection[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1025-1037. [10] 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4000. Li Zheng, Chen Siyuan, Dong Wenjuan, et al.Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4000. [11] 杨镜司, 秦文萍, 史文龙, 等. 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度[J]. 电工技术学报, 2022, 37(1): 58-71. Yang Jingsi, Qin Wenping, Shi Wenlong, et al.Two-stage optimal dispatching of regional power grid based on electric vehicles' participation in peak-shaving pricing strategy[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 58-71. [12] 滕云, 弓玮, 冷欧阳, 等. 用于提升电-气两网调节能力的微网集群协调运行模型[J]. 中国电机工程学报, 2021, 41(2): 642-655. Teng Yun, Gong Wei, Leng Ouyang, et al.Coordination operation model of microgrid cluster for improving electricity-gas networks regulation capability[J]. Proceedings of the CSEE, 2021, 41(2): 642-655. [13] 李鹏, 吴迪凡, 李雨薇, 等. 基于谈判博弈的多微网综合能源系统多目标联合优化配置[J]. 电网技术, 2020, 44(10): 3680-3688. Li Peng, Wu Difan, Li Yuwei, et al.Multi-objective union optimal conApp.Figuration strategy for multi-microgrid integrated energy system considering bargaining games[J]. Power System Technology, 2020, 44(10): 3680-3688. [14] Qiu Haifeng, Zhao Bo, Gu Wei, et al.Bi-level two-stage robust optimal scheduling for AC/DC hybrid multi-microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5455-5466. [15] Sahoo S K, Kishore N K, Sinha A K.Decentralised control and fault ride-through of a multi-microgrid system[J]. IET Smart Grid, 2019, 2(3): 464-476. [16] 刘海涛, 熊雄, 季宇, 等. 直流配电下多微网系统集群控制研究[J]. 中国电机工程学报, 2019, 39(24): 7159-7167, 7489. Liu Haitao, Xiong Xiong, Ji Yu, et al.Cluster control research of multi-microgrids system under DC distribution system[J]. Proceedings of the CSEE, 2019, 39(24): 7159-7167, 7489. [17] 金国彬, 潘狄, 陈庆, 等. 考虑源荷不确定性的直流配电网模糊随机日前优化调度[J]. 电工技术学报, 2021, 36(21): 4517-4528. Jin Guobin, Pan Di, Chen Qing, et al.Fuzzy random day-ahead optimal dispatch of DC distribution network considering the uncertainty of source-load[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4517-4528. [18] 韩景超, 王正发, 刘双龙. 城市生活垃圾制气技术研究[J]. 环境与发展, 2020, 32(12): 64-66. Han Jingchao, Wang Zhengfa, Liu Shuanglong.Research on gasification technology of municipal solid waste[J]. Environment and Development, 2020, 32(12): 64-66. [19] 金红洋, 滕云, 冷欧阳, 等. 基于源荷不确定性状态感知的无废城市多能源协调储能模型[J]. 电工技术学报, 2020, 35(13): 2830-2842. Jin Hongyang, Teng Yun, Leng Ouyang, et al.Multi-energy coordinated energy storage model in zero-waste cities based on situation awareness of source and load uncertainty[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2830-2842. [20] Lisnianski A, Elmakias D, Laredo D, et al.A multi-state Markov model for a short-term reliability analysis of a power generating unit[J]. Reliability Engineering & System Safety, 2012, 98(1): 1-6. [21] He Ruiwen, Deng Jianhua, Lai L L.Reliability evaluation of communication-constrained protection systems using stochastic-flow network models[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 2371-2381. [22] 黄庶, 林舜江, 刘明波. 含风电场和抽水蓄能电站的多目标安全约束动态优化调度[J]. 中国电机工程学报, 2016, 36(1): 112-121. Huang Shu, Lin Shunjiang, Liu Mingbo.Multi-objective security constrained dynamic optimal dispatch with wind farms and pumped storage stations[J]. Proceedings of the CSEE, 2016, 36(1): 112-121. [23] 杨柳青, 林舜江, 刘明波, 等. 考虑风电接入的大型电力系统多目标动态优化调度[J]. 电工技术学报, 2014, 29(10): 286-295. Yang Liuqing, Lin Shunjiang, Liu Mingbo, et al.Multi-objective dynamic optimal dispatch for large-scale power systems considering wind power penetration[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 286-295. [24] 雍静, 赵瑾, 郇嘉嘉, 等. 基于混沌增强烟花算法的多能源系统并网优化调度[J]. 电网技术, 2019, 43(10): 3725-3733. Yong Jing, Zhao Jin, Huan Jiajia, et al.Multi-energy system optimal dispatch based on chaos enhanced firework algorithm in grid connection[J]. Power System Technology, 2019, 43(10): 3725-3733. [25] 王鲁浩, 李歧强, 丁然, 等. 可再生能源微网鲁棒多目标优化调度[J]. 电工技术学报, 2017, 32(5): 184-192. Wang Luhao, Li Qiqiang, Ding Ran, et al.Robust multi-objective optimization scheduling of micro-grids with renewable energy[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 184-192. [26] Bao Minglei, Ding Yi, Singh C, et al.A multi-state model for reliability assessment of integrated gas and power systems utilizing universal generating function techniques[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6271-6283. [27] 张卫国, 宋杰, 郭明星, 等. 考虑电动汽车充电需求的虚拟电厂负荷均衡管理策略[J]. 电力系统自动化, 2022, 46(9): 118-126. Zhang Weiguo, Song Jie, Guo Mingxing, et al.Load balancing management strategy for virtual power plants considering charging demand of electric vehicles[J]. Automation of Electric Power Systems, 2022, 46(9): 118-126. [28] 郜昊强, 宋业建. 氢燃料电池汽车发展趋势分析[J]. 汽车零部件, 2018(12): 75-77. Gao Haoqiang, Song Yejian.Development trend analysis of hydrogen fuel cell vehicle[J]. Automobile Parts, 2018(12): 75-77. [29] 骆玲. 营运天然气汽车燃料消耗量测量方法研究[D]. 西安: 长安大学, 2014. |
|
|
|