|
|
Application and Thinking of Big Data Technology of New Energy Vehicle Monitoring Platform in Driving and Charging Scenarios |
Mao Ling1, Deng Siwen2, Zhao Denghui1, Tang Liying2, Sun Xinjie2 |
1. College of Electrical Engineering Shanghai University of Electric Power Shanghai 200090 China; 2. Shanghai Electric Vehicle Public Data Collecting Monitoring and Research Center Shanghai 201805 China |
|
|
Abstract Because of improvement of energy and climate issues, the development of the new energy automobile industry has received extensive attention. The trend of information and integration of new energy vehicles has accumulated a large amount of data. In order to rationally use big data technology for information processing and data mining, and promote the comprehensive and in-depth integration of new energy vehicles with energy, transportation, and communication, the Shanghai New Energy Vehicle Monitoring Platform has been established. First, the architecture, data collection types and platform label system of Shanghai Electric Vehicle Public Data Collecting, Monitoring and Research Center are introduced. It analyzed the characteristics of the use of new energy vehicles, which focuses on the temporal and spatial distribution of driving behavior and charging behavior. The application directions are provided from some aspects of charging facilities, power grid and security. Finally, the existing problems and development plans of the new energy vehicle monitoring platform are summarized and prospected.
|
Received: 07 August 2021
|
|
|
|
|
[1] 前瞻产业研究院.中国电动汽车行业市场需求预测与投资战略规划分析报告[R/OL]. (2021-05-23)[2021-8-01]. https://bg.qianzhan.com/trends/detail/506/210521-c8f0d1b5.html. [2] 中华人民共和国国务院新闻办公室.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R/OL]. (2021-03-133)[2021-8-01]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. [3] 陈清泉, 高金燕, 何璇, 等. 新能源汽车发展意义及技术路线研究[J]. 中国工程科学, 2018, 20(1): 68-73. Chen Qingquan, Gao Jinyan, He Xuan, et al. Research on the significance of developing new energy vehicles industry and its technical routes[J]. Engineering, 2018, 20(1): 68-73. [4] International Energy Agency.Global EV outlook2021 technology report[R/OL]. (2021-04)[2021-8-01]. https://www.iea.org/reports/global-ev-outlook-2021?mode=overview. [5] 充电联盟:截至6月全国充电桩保有量194.7万台,同比增加 47.3%[EB/OL]. (2021-7-12)[2021-08-01]. https://www.d1ev.com/news/shuju/151202. [6] Wang Zhen, Hong Jichao, Liu Peng, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196(JUN.15): 289-302. [7] 张晓卯.技术赋能整体性治理: 我国新能源汽车产业政策的优化与整合——以上海市“新能源汽车监测平台”为例[J]. 江苏行政学院学报, 2020(5): 111-117. Zhang Xiaomao.Technology empowerment holistic governance: optimization and integration of industrial policies for Chinese new-energy vehicles—a case study of “monitoring platform for new-energy vehicles” in Shanghai[J]. The Journal of Jiangsu Administration Institute, 2020(5): 111-117. [8] 中国国家标准化管理委员会.电动汽车远程服务与管理系统技术规范第1部分:总则[S/OL]. [2021-08-01]. http://c.gb688.cn/bzgk/gb/showGb?type=online &hcno=0C4E83CE82045550C147C782750B221A. Standardization administration.Technical specifications of remote service and management system for electric vehicles—Part 1: General principle [S/OL]. [2021-08-01]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=0C4E83CE82045550C147C782750B221A. [9] 董华彪.能源互联网大数据分析技术综述[J]. 数码世界, 2017(11): 187. Dong Huabiao.Survey of big data analysis technology for energy internet[J]. Digital Space, 2017(11): 187. [10] Con J, Ventura S, Cano A.Distributed selection of continuous features in multilabel classification using mutual information[J]. IEEE Transactions on Neural Networks and Learning Systems, 2010, 31(7): 2280-2293. [11] Geuens S, Coussement K, De Bock K W.A framework for configuring collaborative filtering-based recommendations derived from purchase data[J]. European Journal of Operational Research, 2018, 265(1): 208-218. [12] 游煜城, 张润樾, 黄泽平, 等. 动力电池热失控对新能源汽车的危害[J]. 科学技术创新, 2020(31): 170-172. You Yucheng, Zhang Runyue, Huang Zeping, et al. Harm of thermal runaway of power battery to new energy vehicles[J]. Scientific and Technological Innovation, 2020(31): 170-172. [13] Ji Shoufen, Zhao Dan, Luo Rongjuan.Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles[J]. Energy, 2019, 189: 116064. [14] 吉佳玲.整体性治理视角下的基层政务服务协同供给研究[D]. 杭州: 浙江师范大学, 2020. [15] 艾瑞网.中国新能源汽车也白皮书[R/OL]. (2020-12-30)[2021-8-01]. http://report.iresearch.cn/report_pdf.aspx?id=3713. [16] 李映炼.基于电动汽车出行链的城市充电站布局研究[D]. 北京: 北京交通大学, 2018. [17] 周天沛, 孙伟.基于充电设备利用率的电动汽车充电路径多目标优化调度[J]. 电力系统保护与控制, 2019, 47(4): 115-123. Zhou Tianpei, Sun Wei.Multi-objective optimal scheduling of electric vehicles for charging route based on utilization rate of charging device[J]. Power System Protection and Control, 2019, 47(4): 115-123. [18] Pevec D, Babic J, Carvalho A, et al. Electric vehicle range anxiety: an obstacle for the personal transportation (r)evolution?[C]//2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), 2019, doi: 10.23919/SpliTech. [19] 郭磊, 王克文, 文福拴, 等. 电动汽车充电设施规划研究综述与展望[J]. 电力科学与技术学报, 2019, 34(3): 56-70. Guo Lei, Wang Kewen, Wen Fushuan, et al. Review and prospect of charging facility planning of electric vehicles[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 56-70. [20] 冯鹏洲.大数据技术在智能充电桩网络系统中的应用[J]. 电力大数据, 2018, 21(12): 47-52. Feng Pengzhou.Application of big data technology in intelligent charging pile network system[J]. Power Systems and Big Data, 2018, 21(12): 47-52. [21] 孟腾.新能源汽车充电设施选址规划研究[D]. 济南: 山东交通学院, 2020. [22] 田智勇.基于轨迹数据挖掘的新能源出租车充电特征研究[D]. 武汉: 华中科技大学, 2018. [23] 孔顺飞, 胡志坚, 谢仕炜, 等. 含电动汽车充电站的主动配电网二阶段鲁棒规划模型及其求解方法[J]. 电工技术学报, 2020, 35(5): 1093-1105. Kong Shunfei, Hu Zhijian, Xie Shiwei, et al. Two-stage robust planning model and its solution algorithm of active distribution network containing electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1093-110. [24] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al. Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [25] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al. Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electro-technical Society, 2020, 35(4): 874-884. [26] 邵尹池, 穆云飞, 余晓丹, 等. “车-路-网”模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J]. 中国电机工程学报, 2017, 37(18): 5207-5219. Shao Yinchi, Mu Yunfei, Yu Xiaodan, et al. A spatial-temporal charging load forecast and impact analysis method for distribution network using EVs-traffic-distribution model[J]. Proceedings of the CSEE, 2017, 37(18): 5207-5219. [27] 邹磊.电动汽车大规模接入对电网的影响及对策[D]. 天津: 天津理工大学, 2018. [28] 张艳娟, 苏小林, 闫晓霞, 等. 基于电动汽车时空特性的充电负荷预测[J]. 电力建设, 2015, 36(7): 75-82. Zhang Yanjuan, Su Xiaolin, Yan Xiaoxia, et al. A method of charging load forecast based on electric vehicle time-space characteristic[J]. Electric Power Construction, 2015, 36(7): 75-82. [29] 陈丽丹, 聂涌泉, 钟庆.基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225. Chen Lidan, Nie Yongquan, Zhong Qing.A model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 216-225. [31] 陈丽丹, 张尧, Antonio Figueiredo.电动汽车充放电负荷预测研究综述[J]. 电力系统自动化, 2019, 43(10): 177-191. Chen Lidan, Zhang Yao, Antonio Figueiredo.Overview of charging and discharging load for casting for electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(10): 177-191. [32] 孙近文, 万云飞, 郑培文, 等. 基于需求侧管理的电动汽车有序充放电策略[J]. 电工技术学报, 2014, 29(8): 64-69. Sun Jinwen, Wan Yunfei, Zheng Peiwen, et al. Coordinated charging and discharging strategy for electric vehicles based on demand side management[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 64-69. [33] 赵兴勇, 王帅, 吴新华, 等. 含分布式电源和电动汽车的微电网协调控制策略[J]. 电网技术, 2016, 40(12): 3732-3740. Zhao Xingyong, Wang Shuai, Wu Xinhua, et al. Coordinated control strategy research of micro-grid including distributed generations and electric vehicles[J]. Power System Technology, 2016, 40(12): 3732-3740. [34] 陈泽宇, 熊瑞, 孙逢春.电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93-104+116. Chen Zeyu, Xiong Rui, Sun Fengchun.Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24): 93-104, 116. [35] Xiong Rui, Li Linlin, Tian Jinpeng.Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. [36] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111. Zhou Di, Song Xianhua, Lu Wenbin, et al. Real-time SOH estimation algorithm for Lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111. [37] Tang Xiaopeng, Zou Changfu, Yao Ke, et al. Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method[J]. Applied Energy, 2019, 254: 113591. [38] 耿星, 王友仁.蓄电池SOH估算方法研究综述[J]. 机械制造与自动化, 2019, 48(1): 204-206. Geng Xing, Wang Youren.Review of SOH estimation method for battery[J]. Machine Building & Automation, 2019, 48(1): 204-206. [39] 丁汀.汽车动力电池组均衡控制研究[D]. 兰州: 兰州理工大学, 2019. |
|
|
|